
CS 201

 Signals

Gerson Robboy
Portland State University

– 2 – 15-213, F’02

Signals
A A signalsignal is a message that notifies a process that an is a message that notifies a process that an

event of some type has occurred.event of some type has occurred.
Signals are the operating system abstraction forSignals are the operating system abstraction for

exceptions and interrupts.exceptions and interrupts.
 Asynchronous
 Interrupts the process like an interrupt, but via software

– 3 – 15-213, F’02

Signal Concepts
Sending a signalSending a signal

 Kernel sends (delivers) a signal to a destination process.
 Kernel sends a signal for one of the following reasons:

 Kernel has detected a system event such as divide-by-zero
(SIGFPE) or the termination of a child process (SIGCHLD)

 Another process has invoked the kill system call to request
the kernel to send a signal to the destination process.

– 4 – 15-213, F’02

Let’s pause for a concrete example
A process dereferences a null pointer.A process dereferences a null pointer.
What happens at the hardware level?What happens at the hardware level?
You see something like: You see something like: ““Segmentation fault. CoreSegmentation fault. Core

dumped.dumped.”” Your program terminates. Your program terminates.
The operating system lingo for how the kernelThe operating system lingo for how the kernel

propagates an exception to the process is, it sendspropagates an exception to the process is, it sends
the process a signal.the process a signal.

The process The process ““receivesreceives”” the signal. the signal.
 Usually this means the signal kills the process.

– 5 – 15-213, F’02

Signal Concepts (cont)
Receiving a signalReceiving a signal

 A destination process receives a signal sent by the kernel.
 By default, most signals cause the process to terminate.
 But, there’s a way a process can handle most signals. We’ll

see how.
 Three possible ways to react:

 Ignore the signal (do nothing)
 Terminate the process.
 Catch the signal by executing a user-level function called a

signal handler.
» Analogous to a kernel exception handler
» Asynchronous

A signal is A signal is pendingpending if it has been sent but not yet if it has been sent but not yet
received.received.

– 6 – 15-213, F’02

Signals
Sent by the kernel to a process.Sent by the kernel to a process.
Different signals are identified by small integer IDDifferent signals are identified by small integer ID’’ss
The only information in a signal is its ID and the factThe only information in a signal is its ID and the fact

that it arrived.that it arrived.

A few frequently seen signals:A few frequently seen signals:

Timer signalTimer signalTerminateTerminateSIGALRMSIGALRM1414
Segmentation violationSegmentation violationTerminate & DumpTerminate & DumpSIGSEGVSIGSEGV1111

1717

99
22

IDID

Child stopped or terminatedChild stopped or terminatedIgnoreIgnoreSIGCHLDSIGCHLD

Kill program (cannot override or ignore)Kill program (cannot override or ignore)TerminateTerminateSIGKILLSIGKILL
Interrupt from keyboard (Interrupt from keyboard (ctlctl-c-c))TerminateTerminateSIGINTSIGINT
Corresponding EventCorresponding EventDefault ActionDefault ActionNameName

– 7 – 15-213, F’02

Default Actions
Each signal type has a predefined Each signal type has a predefined default actiondefault action, which, which

is one of:is one of:
 The process terminates
 The process terminates and dumps core.
 The process stops until restarted by a SIGCONT signal.
 The process ignores the signal.

– 8 – 15-213, F’02

Putting it all together
Remember Remember exceptionsexceptions? An exception is an event that? An exception is an event that

alters the flow of control at the hardware level.alters the flow of control at the hardware level.
 Control goes to the kernel, via an interrupt vector.
 The kernel has a handler for each kind of event.
 Usually this detour of control is invisible to the user process.

For some events, particularly faults, the kernel handlesFor some events, particularly faults, the kernel handles
the event by sending a the event by sending a signal signal to the process.to the process.

Signals are the higher level, software abstraction ofSignals are the higher level, software abstraction of
exceptions.exceptions.
 Alters the flow of control of a process.
 Can also have a handler (analogous to an exception handler)

– 9 – 15-213, F’02

Putting it all together (continued)
Signals typically alter the flow of control at the userSignals typically alter the flow of control at the user

level.level.
 By default, most signals (but not all) terminate the process.
 Can send control to a signal handler in the user program.

– 10 – 15-213, F’02

Installing Signal Handlers
The The signalsignal function modifies the default action function modifies the default action

associated with the receipt of signal associated with the receipt of signal signumsignum::
handler_t *signal(int signum, handler_t *handler);

Different values for Different values for handlerhandler::
 SIG_IGN: ignore signals of type signum
 SIG_DFL: revert to the default action for signals of type signum.

 Yes, this is weird, but you can assign these integer values to a
pointer.

 Otherwise, handler is the address of a signal handler

– 11 – 15-213, F’02

Signal Handling Example
void sigint_handler(int sig)
{
 printf("Process %d received signal %d\n",
 getpid(), sig);
 exit(0);
}

main()
{
 . . . // Do stuff
 signal(SIGINT, sigint_handler);
 . . . // Do more stuff
}

What exactly happens when signal is called from main?
What will happen when the user hits Control-C?

– 12 – 15-213, F’02

Signal Handlers
A signal handler is a function you write, to handle aA signal handler is a function you write, to handle a

signal.signal.
 Called when process receives signal of type signum
 Referred to as “installing” the handler.
 Executing handler is called “catching” or “handling” the

signal.

When a signal is received, control is diverted to theWhen a signal is received, control is diverted to the
handler.handler.

When the handler returns, control passes back to:When the handler returns, control passes back to:
 In some cases, the next instruction.
 In some cases, the instruction that was interrupted by an

exception.

– 13 – 15-213, F’02

wait: Synchronizing with children

int int wait(wait(int int *child_status)*child_status)

 What does the What does the waitwait system call actually do? system call actually do?
 What is the default action of SIGCHLD?What is the default action of SIGCHLD?
 What does a SIGCHLD signal do if you have calledWhat does a SIGCHLD signal do if you have called

wait?wait?
 What does it do if you havenWhat does it do if you haven’’t called wait?t called wait?
 Can you catch a SIGCHLD signal with a handler?Can you catch a SIGCHLD signal with a handler?
 What happens if you fork a child, the child exits, youWhat happens if you fork a child, the child exits, you

dondon’’t have a SIGCHLD handler, and you never callt have a SIGCHLD handler, and you never call
wait?wait?

– 14 – 15-213, F’02

Exercise
Write a small program that installs a handler for theWrite a small program that installs a handler for the

SIGSEGV signal, and then accesses an illegalSIGSEGV signal, and then accesses an illegal
memory address in order to execute the handler.memory address in order to execute the handler.

– 15 – 15-213, F’02

Sending Signals with kill Program
kill kill program sendsprogram sends

arbitrary signal to aarbitrary signal to a
process or processprocess or process
groupgroup

ExamplesExamples
 kill –9 24818

 Send SIGKILL to
process 24818

 kill –9 –24817
 Send SIGKILL to
every process in
process group
24817.

linux> ./forks 16
linux> Child1: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps
 PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24818 pts/2 00:00:02 forks
24819 pts/2 00:00:02 forks
24820 pts/2 00:00:00 ps
linux> kill -9 -24817
linux> ps
 PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps
linux>

– 16 – 15-213, F’02

Other useful system calls
#include <sys/types.h>#include <sys/types.h>
#include <signal.h>#include <signal.h>
int kill(pid_t pid, int sig);int kill(pid_t pid, int sig);

 Sends signal Sends signal sigsig to process to process pidpid
 Although the name is Although the name is ‘‘kill,kill,’’ it can be used for it can be used for

communicationcommunication
 The recipient process can catch the signal if not SIGKILL
 Synchronization between processes

– 17 – 15-213, F’02

Other useful system calls
#include <sys/types.h>#include <sys/types.h>
#include <sys/wait.h>#include <sys/wait.h>
pidpid__t waitpid(pid_t pid, int *status,t waitpid(pid_t pid, int *status,

int options);int options);

 A newer, more versatile form of A newer, more versatile form of waitwait
 Can wait on a particular pid, a process group, or allCan wait on a particular pid, a process group, or all

child processeschild processes
 Options:Options:

 WNOHANG: Return immediately if no child has exited (and if
a child has exited, return the pid)

 WUNTRACED: Also return for children which are stopped
but not traced.

– 18 – 15-213, F’02

Other useful system calls
#include <unistd.h>#include <unistd.h>
unsigned int alarm(unsigned int seconds);unsigned int alarm(unsigned int seconds);

 Sends signal Sends signal SIGALRMSIGALRM to this process after to this process after
secondsseconds

 What is the default action for SIGALRM?What is the default action for SIGALRM?

– 19 – 15-213, F’02

Sending Signals with kill Function
void fork12()
{
 pid_t pid[N];
 int i, child_status;
 for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)
 while(1); /* Child infinite loop */

 /* Parent terminates the child processes */
 for (i = 0; i < N; i++) {

printf("Killing process %d\n", pid[i]);
kill(pid[i], SIGINT);

 }

 /* Parent reaps terminated children */
 for (i = 0; i < N; i++) {

pid_t wpid = wait(&child_status);
 }
}

– 20 – 15-213, F’02

What does this program do?
#include <unistd.h>#include <unistd.h>

main()main()

{{

 int i; int i;

 int j = alarm(6); int j = alarm(6);

 while(1); while(1);

 printf("exiting\n"); printf("exiting\n");

 exit(0); exit(0);

}}

– 21 – 15-213, F’02

A Program That Reacts to Internally
Generated Events
#include <stdio.h>
#include <signal.h>

int beeps = 0;

/* SIGALRM handler */
void handler(int sig) {
 printf("BEEP\n");
 fflush(stdout);

 if (++beeps < 5)
 alarm(1);
 else {
 printf("BOOM!\n");
 exit(0);
 }
}

main() {
 signal(SIGALRM, handler);
 alarm(1); /* send SIGALRM in
 1 second */

 while (1) {
 /* handler returns here */
 }
}

What does this program do?

– 22 – 15-213, F’02

Signals do not interrupt a handler for the same
signal
While handling a signal, that signal is While handling a signal, that signal is blockedblocked..
That is one way that signals get to be pending.That is one way that signals get to be pending.
When the handler returns, then the blocked signal canWhen the handler returns, then the blocked signal can

be received.be received.

– 23 – 15-213, F’02

Signals do not have queues
Just one bit for each pending signal typeJust one bit for each pending signal type

What happens if many signals arrive at once?What happens if many signals arrive at once?
 The process is handling the first one
 The second one is pending
 Other signals may be lost

– 24 – 15-213, F’02

int ccount = 0;
void child_handler(int sig)
{
 int child_status;
 pid_t pid = wait(&child_status);
 ccount--;
 printf("Received signal %d from process %d\n", sig, pid);
}

int main()
{
 pid_t pid[N];
 int i, child_status;
 ccount = N;
 signal(SIGCHLD, child_handler);
 for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0) {
 exit(0);
}

 while (ccount > 0)
pause();/* Suspend until signal occurs */

}

– 25 – 15-213, F’02

If a process has many children and wants to
reliably know when each one terminates, how
do you do it?

– 26 – 15-213, F’02

Sigaction()
The newer version of The newer version of signalsignal with a zillion options. with a zillion options.
Problem: different flavors of Unix have subtleProblem: different flavors of Unix have subtle

variations in how they handle signals (see sec. 8.5)variations in how they handle signals (see sec. 8.5)
 Really a problem to standardize

The POSIX solution : sigaction can specify in detailThe POSIX solution : sigaction can specify in detail
how signal handling should behavehow signal handling should behave

Use sigaction to write portable signal-handling code.Use sigaction to write portable signal-handling code.
On POSIX-compliant systems, signal is implementedOn POSIX-compliant systems, signal is implemented

using sigaction.using sigaction.
 but POSIX doesn’t specify in detail how signal should

behave.

– 27 – 15-213, F’02

Summary
Signals provide process-level exception handlingSignals provide process-level exception handling

 Can generate signals from user programs
 Can handle them with signal handlers

Some caveatsSome caveats
 Very high overhead

 >10,000 clock cycles
 Only use for exceptional conditions

 They don’t have queues
 Just one bit for each pending signal type

