CS 201

Signals

Gerson Robboy
Portland State University

Signals

A signal is a message that notifies a process that an
event of some type has occurred.

Signals are the operating system abstraction for
exceptions and interrupts.

m Asynchronous
m Interrupts the process like an interrupt, but via software

-2 - 15-213, F’02

Signal Concepts

Sending a signal
m Kernel sends (delivers) a signal to a destination process.

m Kernel sends a signal for one of the following reasons:

® Kernel has detected a system event such as divide-by-zero
(SIGFPE) or the termination of a child process (SIGCHLD)

® Another process has invoked the kill system call to request
the kernel to send a signal to the destination process.

3 15-213, F'02

Let’s pause for a concrete example

A process dereferences a null pointer.
What happens at the hardware level?

You see something like: “Segmentation fault. Core
dumped.” Your program terminates.

The operating system lingo for how the kernel
propagates an exception to the process is, it sends
the process a signal.

The process “receives” the signal.
m Usually this means the signal kills the process.

-4 - 15-213, F’02

Sighal Concepts (cont)

Receiving a signal
m A destination process receives a signal sent by the kernel.
m By default, most signhals cause the process to terminate.

m But, there’s a way a process can handle most signals. We'll
see how.
m Three possible ways to react:
® Ignore the signal (do nothing)
® Terminate the process.

® Caich the signal by executing a user-level function called a
signal handler.

» Analogous to a kernel exception handler
» Asynchronous

A signal is pending if it has been sent but not yet
received.

5 15-213, F'02

Signals

Sent by the kernel to a process.
Different signals are identified by small integer ID’s

The only information in a signal is its ID and the fact
that it arrived.

A few frequently seen signals:

ID Name Default Action Corresponding Event
2 | SIGINT | Terminate Interrupt from keyboard (ctl-c)
9 | SIGKILL | Terminate Kill program (cannot override or ignore)
11 | SIGSEGV | Terminate & Dump | Segmentation violation
14 | SIGALRM | Terminate Timer signal
17 | SIGCHLD | Ignore Child stopped or terminated

_6— 15-213, F'02

Default Actions

Each signal type has a predefined default action, which
IS one of:

m The process terminates

m The process terminates and dumps core.

m The process stops until restarted by a SIGCONT signal.
m The process ignhores the signal.

7 15-213, F’02

Putting it all together

Remember exceptions? An exception is an event that
alters the flow of control at the hardware level.

m Control goes to the kernel, via an interrupt vector.
m The kernel has a handler for each kind of event.
m Usually this detour of control is invisible to the user process.

For some events, particularly faults, the kernel handles
the event by sending a signal to the process.

Signals are the higher level, software abstraction of
exceptions.

m Alters the flow of control of a process.
m Can also have a handler (analogous to an exception handler)

g 15-213, F'02

Putting it all together (continued)

Signals typically alter the flow of control at the user
level.

m By default, most signals (but not all) terminate the process.
m Can send control to a signal handler in the user program.

9- 15-213, F'02

Installing Signal Handlers

The signal function modifies the default action
associated with the receipt of signal signum:

handler t *signal (int signum, handler t *handler);

Different values for handler:
m SIG_IGN: ignore signals of type signum

m SIG_DFL: revert to the default action for signals of type signum.

® Yes, this is weird, but you can assign these integer values to a
pointer.

m Otherwise, handler is the address of a signal handler

—10 - 15-213, F’02

Signal Handling Example

void sigint handler (int sigq)
{
printf ("Process %d received signal %d\n",
getpid (), sig);
exit (0) ;
}
main ()
{
.. // Do stuff
signal (SIGINT, sigint handler);
// Do more stuff
}

What exactly happens when signal is called from main?
What will happen when the user hits Control-C?

—-11 -

15-213, F’02

Signal Handlers

A signal handler is a function you write, to handle a
signal.

m Called when process receives signal of type signum
m Referred to as “installing” the handler.

m Executing handler is called “catching” or “handling” the
signal.

When a signal is received, control is diverted to the
handler.

When the handler returns, control passes back to:
m In some cases, the next instruction.

m In some cases, the instruction that was interrupted by an
exception.

12— 15-213, F’02

wait: Synchronizing with children

int wait(int *child status)
® What does the wait system call actually do?
® What is the default action of SIGCHLD?

® What does a SIGCHLD signal do if you have called
wait?

® What does it do if you haven’t called wait?
® Can you catch a SIGCHLD signal with a handler?

® What happens if you fork a child, the child exits, you
don’t have a SIGCHLD handler, and you never call
wait?

_ 13— 15-213, F'02

Exercise

Write a small program that installs a handler for the
SIGSEGYV signal, and then accesses an illegal
memory address in order to execute the handler.

- 14 - 15-213, F’02

Sending Signals with kill Program

kill program sends

arbitrary signal to a linux> ./forks 16
process or process linux> Childl: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817
group
linux> ps
PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
Examples 24818 pts/2 00:00:02 forks
mkill -9 24818 24819 pts/2 00:00:02 forks

linux> kill -9 -24817
linux> ps
mkill -9 -24817 PID TTY TIME CMD

® Send SIGKILL to 24788 pts/2 00:00:00 tcsh
. 24823 pts/2 00:00:00 ps
every process in

linux>
process group
24817.

process 24818

—15— 15-213, F’02

Other useful system calls

#include <sys/types.h>
#include <signal.h>
int kill(pid t pid, int sig);

® Sends signal sig to process pid

® Although the name is ‘Kill,’ it can be used for
communication

m The recipient process can catch the signal if not SIGKILL
m Synchronization between processes

_ 16— 15-213, F'02

Other useful system calls

#include <sys/types.h>

#include <sys/wait.h>

pid_t waitpid(pid t pid, int *status,
int options);

® A newer, more versatile form of wait

® Can wait on a particular pid, a process group, or all
child processes

® Options:

m WNOHANG: Return immediately if no child has exited (and if
a child has exited, return the pid)

m WUNTRACED: Also return for children which are stopped
but not traced.

17— 15-213, F’02

Other useful system calls

#include <unistd.h>
unsigned int alarm(unsigned int seconds);

® Sends signal SIGALRM to this process after
seconds

® What is the default action for SIGALRM?

_ 18— 15-213, F'02

Sending Signals with kill Function

void forkl2 ()

{

—19—

pid t pid[N];
int i, child status;
for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0)
while(l); /* Child infinite loop */

/* Parent terminates the child processes */
for (1 = 0; i < N; i++) {
printf ("Killing process %d\n", pid[i]);
kill (pid[i], SIGINT)
}

/* Parent reaps terminated children */
for (i = 0; i < N; i++) {

pid t wpid = wait(&child status);
}

15-213, F’02

What does this program do?

#include <unistd.h>
main ()
{

int i;

int j = alarm(6) ;

while (1) ;
printf ("exiting\n") ;
exit(0) ;

_ 20— 15-213, F'02

A Program That Reacts to Internally
Generated Events

#include <stdio.h> main () {
#include <signal.h> signal (SIGALRM, handler);
alarm(l); /* send SIGALRM in
int beeps = 0; 1 second */
/* SIGALRM handler */ while (1) {
void handler (int sig) { /* handler returns here */
printf ("BEEP\n") ; }
fflush (stdout) ; }

if (++beeps < 5)
alarm(1l) ;
else { What does this program do?
printf ("BOOM!\n") ;
exit (0) ;
}
}

oq 15-213, F’02

Signals do not interrupt a handler for the same
signal

While handling a signal, that signal is blocked.
That is one way that signals get to be pending.

When the handler returns, then the blocked signal can
be received.

—_2o_ 15-213, F’02

Signals do not have queues

Just one bit for each pending signal type

What happens if many signals arrive at once?
m The process is handling the first one
m The second one is pending
m Other signals may be lost

23—

15-213, F’02

int

{

int

ccount = 0;

void child;handler(int sig)

int child status;

pid t pid = wait(&child status);

ccount--;

printf ("Received signal %d from process %d\n", sig, pid);

main ()

pid t pid[N];
int i, child status;
ccount = N;
signal (SIGCHLD, child handler) ;
for (1 = 0; 1 < N; i++4)

if ((pid[i] = fork()) == 0) {

exit (0) ;

}
while (ccount > 0)

pause() ;/* Suspend until signal occurs */

— 24 —

15-213, F’02

_ 25—

If a process has many children and wants to
reliably know when each one terminates, how
do you do it?

15-213, F’02

Sigaction()

The newer version of signal with a zillion options.

Problem: different flavors of Unix have subtle
variations in how they handle signals (see sec. 8.5)

m Really a problem to standardize

The POSIX solution : sigaction can specify in detail
how signal handling should behave

Use sigaction to write portable signal-handling code.

On POSIX-compliant systems, signal is implemented
using sigaction.

m but POSIX doesn’t specify in detail how signal should
behave.

— 26 — 15-213, F’02

Summary

Signals provide process-level exception handling
m Can generate signals from user programs
m Can handle them with signal handlers

Some caveats

m Very high overhead
® >10,000 clock cycles
e Only use for exceptional conditions

m They don’t have queues
e Just one bit for each pending signal type

— 27 —

15-213, F’02

