
CS 201

 Processes

Gerson Robboy
Portland State University

– 2 – 15-213, F’02

Review
Definition: A Definition: A processprocess is an instance of a running is an instance of a running

program.program.
 One of the most fundamental concepts in computer science.
 Not the same as “program” or “processor”

A A programprogram is a set of instructions and initialized data in is a set of instructions and initialized data in
a file, usually found on a disk.a file, usually found on a disk.

A A processprocess is an instance of that program while it is is an instance of that program while it is
running, along with the state of all the CPU registersrunning, along with the state of all the CPU registers
and the values of data in memory.and the values of data in memory.

A single program can correspond to many processes;A single program can correspond to many processes;
for example, several users can be running a shell.for example, several users can be running a shell.

– 3 – 15-213, F’02

Processes
The operating system provides each process with aThe operating system provides each process with a

virtual machinevirtual machine

If a process were a thing that can have a point of view,If a process were a thing that can have a point of view,
it would see itself having exclusive use of theit would see itself having exclusive use of the
computer.computer.
 Running continuously on the CPU
 In possession of the entire memory space, CPU registers,

and I/O devices
 No other processes are visible
 If it checked the wall time often, the process might notice

gaps in time it can not account for

– 4 – 15-213, F’02

Logical Control Flows

Time

Process A Process B Process C

Each process has its own logical control flow

– 5 – 15-213, F’02

Context Switching
Processes are managed by a shared chunk of OS codeProcesses are managed by a shared chunk of OS code

called the called the kernelkernel
 The kernel is not a separate process, but rather runs as part

of some user process

Control flow passes from one process to another via aControl flow passes from one process to another via a
context switch.context switch.

Process A
code

Process B
code

user code

kernel code

user code

kernel code

user code

Time
context switch

context switch

– 6 – 15-213, F’02

Private Address Spaces
Each process has its own private address space.Each process has its own private address space.

kernel virtual memory
(code, data, heap, stack)

memory mapped region for
shared libraries

run-time heap
(managed by malloc)

user stack
(created at runtime)

unused0

%esp (stack pointer)

memory
invisible to
user code

brk

0xc0000000

0x08048000

0x40000000

read/write segment
(.data, .bss)

read-only segment
(.init, .text, .rodata)

loaded from the
executable file

0xffffffff

– 7 – 15-213, F’02

How do processes get created?
The The fork() fork() system call creates a new process.system call creates a new process.
Every process is created by another process.Every process is created by another process.

 With one exception, the very first process…

fork() creates a duplicate of the process that called it.fork() creates a duplicate of the process that called it.

– 8 – 15-213, F’02

fork: Creating new processes

intint fork(void) fork(void)
 creates a new process (child process) that is

identical to the calling process (parent process)
 Fork is called once but returns in two separate

processes.
 The processes are identical except for one detail:

 fork returns 0 to the child process
 fork returns the child’s pid to the parent process

– 9 – 15-213, F’02

int fork(void)

if (fork() == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

In this code example, what will you see on the screen?

– 10 – 15-213, F’02

Fork
Key PointsKey Points

 Parent and child both run the same code
 Distinguish parent from child by return value from fork

 Both processes, after fork, have identical state
 Including shared open file descriptors
 Relative ordering of their print statements undefined
 The two processes will go their separate ways without

synchronizing

 This is important: Separate memory spaces.

– 11 – 15-213, F’02

Fork Example #1

void fork1()
{
 int x = 1;
 pid_t pid = fork();
 if (pid == 0) {

printf("Child has x = %d\n", ++x);
 } else {

printf("Parent has x = %d\n", --x);
 }
 printf("Bye from process %d with x = %d\n", getpid(), x);
}

What does this program do?What does this program do?

– 12 – 15-213, F’02

Fork Example #2

void fork2()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("Bye\n");
}

Both parent and child can continue forkingBoth parent and child can continue forking

P1

Bye
Bye

Bye
Bye

P0

P2

P3

– 13 – 15-213, F’02

Exercise

void doit()
{
 fork();
 fork();
 printf(“hello\n");
 return;
}

int main()
{
 doit();
 printf(“hello\n”);
 exit(0);
}

What does this program print?What does this program print?

– 14 – 15-213, F’02

Exercise: What does this program print?
static int j = 0;

do_child(int i)
{

int pid;
if (i < 2){
 pid = fork();
 if(pid == -1)

exit(0);
 else if(pid == 0){

do_child(i+1);
 } else {

j++;
printf("This is process %d, j=%d\n", i, j);

 }
} else {
 j++;
 printf("This is process %d, j=%d\n", i, j);

}
}

main()
{

do_child(0);
}

– 15 – 15-213, F’02

OK, so now we know how to create processes.OK, so now we know how to create processes.

DoesnDoesn’’t a computer do something besides runt a computer do something besides run
duplicate copies of whatduplicate copies of what’’s already running?s already running?

How?How?

– 16 – 15-213, F’02

exec: Running new programs
A family of related functions: execv, execp, execlA family of related functions: execv, execp, execl
int execlint execl(char *path, char *arg0, char *arg1, (char *path, char *arg0, char *arg1, ……, 0), 0)

 loads and runs executable at path with args arg0, arg1, …
 path is the complete path of an executable
 arg0 becomes the name of the process
 “real” arguments to the executable start with arg1, etc.
 list of args is terminated by a (char *)0 argument

HereHere’’s what they all do:s what they all do:
 Overwrite the calling process with a new program

 Does not create a new process
 Runs a new program

 returns -1 if error, otherwise doesn’t return
 Why doesn’t it return?

– 17 – 15-213, F’02

Example
A program that creates a child process, the childA program that creates a child process, the child

executes executes /usr/bin/ls/usr/bin/ls, and then the parent prints, and then the parent prints
““done.done.””

main() {
 if (fork() == 0) {
 execl("/usr/bin/ls", “ls”, 0);
 }
 wait(0); // This is the parent
 printf(“done\n”);
 exit(0);
}

– 18 – 15-213, F’02

exit: Destroying Process
void exit(void exit(int int status)status)

 exits a process
 Normally return with status 0

 atexit() registers functions to be executed upon exit

void cleanup(void) {
 printf("cleaning up\n");
}

void fork6() {
 atexit(cleanup);
 fork();
 exit(0);
}

– 19 – 15-213, F’02

wait: Synchronizing with children
int int wait(wait(int int *child_status)*child_status)

 suspends current process until one of its children
terminates

 return value is the pid of the child process that terminated
 If the child has already terminated, then wait returns its pid

immediately
 If child_status != NULL, then the object it points to will

be set to a status indicating why the child process
terminated

– 20 – 15-213, F’02

wait: Synchronizing with children
void fork9() {
 int child_status;

 if (fork() == 0) {
 printf("HC: hello from child\n");
 }
 else {
 printf("HP: hello from parent\n");
 wait(&child_status);
 printf("CT: child has terminated\n");
 }
 printf("Bye\n");
 exit();
}

HP

HC Bye

CT Bye

– 21 – 15-213, F’02

wait: reaping children
int int wait(wait(int int *child_status)*child_status)

 If the child has already terminated, then wait returnsIf the child has already terminated, then wait returns
its pid immediatelyits pid immediately

 What if many children have terminated?What if many children have terminated?
 Will wait reliably return pids of all terminated children?
 Is it possible to lose some?

 Terminated child processes turn into zombiesTerminated child processes turn into zombies
 Wait reaps the zombies

– 22 – 15-213, F’02

Still more on wait
What What ‘‘waitwait’’ is really waiting for is a SIGCHLD signal. is really waiting for is a SIGCHLD signal.
Other signals can also cause wait to return.Other signals can also cause wait to return.
When wait returns, check to see if it really returns theWhen wait returns, check to see if it really returns the

pid of a child processpid of a child process
 Otherwise, it could have been some other signal

– 23 – 15-213, F’02

Multitasking
The System Runs Many Processes ConcurrentlyThe System Runs Many Processes Concurrently
State consists of memory image + register valuesState consists of memory image + register values

 general registers
 system registers include program counter, pointer to page

tables, …

The kernel continually switches from one process toThe kernel continually switches from one process to
anotheranother
 Sometimes a process blocks waiting for I/O
 Sometimes the timer pre-empts a process

To us, observing from outside the computer, it appearsTo us, observing from outside the computer, it appears
that all processes are running concurrently.that all processes are running concurrently.

– 24 – 15-213, F’02

Unix Startup: Step 1

init [1]

[0] Process 0: handcrafted kernel process

Child process 1 execs /sbin/init

1. Pushing reset button loads the PC with the address of a small
 bootstrap program.
2. Bootstrap program loads the operating system kernel from the
 file system, or maybe a secondary bootstrap program
3. Bootstrap program passes control to kernel.
5. Kernel handcrafts “process 0.”

Process 0 forks child process 1

– 25 – 15-213, F’02

Unix Startup: Step 2

init [1]

[0]

gettyDaemons
e.g. ftpd, httpd

/etc/inittab
init forks and execs
daemons per
/etc/inittab, and forks
and execs a getty program
for the console

– 26 – 15-213, F’02

Unix Startup: Step 3

init [1]

[0]

The getty process
execs a login
program

login

– 27 – 15-213, F’02

Unix Startup: Step 4

init [1]

[0]

login reads login and passwd.
if OK, it execs a shell.
if not OK, it execs another getty

tcsh

– 28 – 15-213, F’02

Unix Process Hierarchy

Login shell

ChildChildChild

GrandchildGrandchild

[0]

Daemon
e.g. httpd

init [1]

– 29 – 15-213, F’02

So the kernel never spontaneously creates a process,So the kernel never spontaneously creates a process,
except for process zero.except for process zero.

The kernel creates a process when some existingThe kernel creates a process when some existing
process calls fork().process calls fork().

– 30 – 15-213, F’02

Programmer’s Model of Multitasking
Basic FunctionsBasic Functions

 fork() spawns new process
 Called once, returns twice
 Parent and child process both resume running where fork()

returns.
 exit() terminates the process that calls it

 Called once, never returns
 wait() and waitpid() wait for and reap terminated

children
 execl(), execv(), and friends

 run a new program in an existing process
 Called once, normally never returns

– 31 – 15-213, F’02

Example: Shell Programs
A A shellshell is an application program that runs programs on is an application program that runs programs on

behalf of the user.behalf of the user.
 sh – Original Unix Bourne Shell
 csh – BSD Unix C Shell, tcsh – Enhanced C Shell
 bash –Bourne-Again Shell

int main()
{
 char cmdline[MAXLINE];

 while (1) {
/* read */
printf("> “);
fgets(cmdline, MAXLINE,

stdin);
if (feof(stdin))
 exit(0);
eval(cmdline);

 }
}

Execution is a sequence ofExecution is a sequence of
read/evaluate stepsread/evaluate steps

– 32 – 15-213, F’02

Simple Shell eval Function
void eval(char *cmdline)
{
 char *argv[MAXARGS]; /* argv for execve() */
 int bg; /* should the job run in bg or fg? */
 pid_t pid; /* process id */

 bg = parseline(cmdline, argv);
 if (!builtin_command(argv)) {

if ((pid = Fork()) == 0) { /* child runs user job */
 if (execve(argv[0], argv, environ) < 0) {

printf("%s: Command not found.\n", argv[0]);
exit(0);

 }
}

if (!bg) { /* parent waits for fg job to terminate */
 int status;

 if (waitpid(pid, &status, 0) < 0)
unix_error("waitfg: waitpid error");

}
else /* otherwise, don’t wait for bg job */
 printf("%d %s", pid, cmdline);

 }
}

– 33 – 15-213, F’02

Summarizing
ProcessesProcesses

 At any given time, a system can have multiple active processes
 Only one can execute at a time, though

 Per CPU, that is
 Each process, from its own point of view, appears to have total

control of a virtual computer
 A CPU, including its registers
 A virtual memory space

– 34 – 15-213, F’02

Summarizing (cont.)
Spawning ProcessesSpawning Processes

 Call to fork
 One call, two returns

Terminating ProcessesTerminating Processes
 Call exit

 One call, no return

Reaping ProcessesReaping Processes
 Call wait or waitpid

Replacing Program Executed by ProcessReplacing Program Executed by Process
 Call execl (or variant)

 One call, normally no return

