CS 201

Processes

Gerson Robboy
Portland State University

Review

Definition: A process is an instance of a running
program.
= One of the most fundamental concepts in computer science.
m Not the same as “program” or “processor”

A program is a set of instructions and initialized data in
a file, usually found on a disk.

A process is an instance of that program while it is
running, along with the state of all the CPU registers
and the values of data in memory.

A single program can correspond to many processes;
for example, several users can be running a shell.

o 15-213, F’02

Processes

The operating system provides each process with a
virtual machine

If a process were a thing that can have a point of view,
it would see itself having exclusive use of the
computer.

= Running continuously on the CPU

m In possession of the entire memory space, CPU registers,
and I/O devices

m No other processes are visible

m If it checked the wall time often, the process might notice
gaps in time it can not account for

3 15-213, F'02

Logical Control Flows

Each process has its own logical control flow

Process A Process B Process C

Time

4 15-213, F’02

Context Switching

Processes are managed by a shared chunk of OS code
called the kernel

m The kernel is not a separate process, but rather runs as part
of some user process

Control flow passes from one process to another via a
context switch.

Process A Process B

15-213, F’02

Private Address Spaces

Each process has its own private address space.

Oxffffffff

0xc0000000

0x40000000

0x08048000
0

kernel virtual memory
(code, data, heap, stack)

user stack
(created at runtime)

v
A

memory mapped region for
shared libraries

!

run-time heap
(managed by malloc)

read/write segment
(.data, .bss)

read-only segment
(.init, .text, .rodata)

unused

memory
invisible to
user code

%esp (stack pointer)

<4“— Dprk

\ loaded from the
executable file

15-213, F’02

How do processes get created?

The fork() system call creates a new process.

Every process is created by another process.
m With one exception, the very first process...

fork() creates a duplicate of the process that called it.

-7 - 15-213, F’02

fork: Creating new processes

int fork (void)

m creates a new process (child process) that is
identical to the calling process (parent process)

m Fork is called once but returns in two separate
processes.

m The processes are identical except for one detail:

e fork returns 0 to the child process
® fork returns the child’s pid to the parent process

g 15-213, F'02

int fork(void)

if (fork() == 0) {
printf ("hello from child\n");
} else {

printf ("hello from parent\n");
}

In this code example, what will you see on the screen?

15-213, F’02

Fork

Key Points

m Parent and child both run the same code
® Distinguish parent from child by return value from fork

m Both processes, after fork, have identical state
® Including shared open file descriptors
e Relative ordering of their print statements undefined

® The two processes will go their separate ways without
synchronizing

m This is important: Separate memory spaces.

—10 -

15-213, F’02

Fork Example #1

What does this program do?

void forkl ()
{
int x = 1;
pid t pid = fork();
if (pid == 0) {
printf ("Child has x = %d\n", ++x);
} else {
printf ("Parent has x = %d\n", --x)
}

printf ("Bye from process %d with x =

°
14

$d\n", getpid(), x);

—-11 -

15-213, F’02

Fork Example #2

Both parent and child can continue forking

void fork2 ()

{
printf ("LO\n") ;
fork () ;
printf ("L1\n");
fork () ;
printf ("Bye\n") ;

—12—

P3 Bye
Pl Bye

p2 Bye
Bye

PO

15-213, F’02

Exercise

What does this program print?

void doit()
{
fork () ;
fork () ;
printf (“hello\n") ;
return;

int main ()

doit () ;
printf (“hello\n”) ;
exit(0) ;

_ 13— 15-213, F'02

Exercise: What does this program print?

—14 -

static int j = 0;

do child(int i)

{
int pid;
if (i < 2){
pid = fork();
if (pid == -1)
exit(0) ;
else if (pid == 0) {
do child(i+l);
} else {
j++;
printf ("This is process %d, j=%d\n", i, J);
}
} else {
j++;
printf ("This is process %d, j=%d\n", i, j);
}
}
main ()
{
do child(0) ;
}

15-213, F’02

OK, so now we know how to create processes.

Doesn’t a computer do something besides run
duplicate copies of what’s already running?

How?

—15—

15-213, F’02

exec: Running new programs

A family of related functions: execv, execp, execl
int execl (char *path, char *arg0, char *argl, .., 0)

m loads and runs executable at path with args arg0, argl, ...
® path is the complete path of an executable
® arg0 becomes the name of the process
® “real” arguments to the executable start with argl, etc.
e list of args is terminated by a (char *) 0 argument

Here’s what they all do:

m Overwrite the calling process with a new program
e Does not create a new process
® Runs a new program

m returns -1 if error, otherwise doesn’t return
® Why doesn’t it return?

_ 16— 15-213, F'02

Example

A program that creates a child process, the child
executes /usr/bin/ls, and then the parent prints

“done.”
main () {
if (fork() == 0) {

execl ("/usr/bin/l1ls", “1s”, 0);

}

wait (0) ; // This is the parent
printf (“done\n”) ;
exit (0) ;

17— 15-213, F’02

exit: Destroying Process

void exit (int status)

—18 —

m exits a process
e Normally return with status 0

m atexit () registers functions to be executed upon exit

void cleanup (void) {
printf ("cleaning up\n");

}

void fork6 () {
atexit (cleanup) ;
fork () ;
exit (0) ;

15-213, F’02

wait: Synchronizing with children

int wait(int *child status)
m suspends current process until one of its children
terminates
m return value is the pid of the child process that terminated

m If the child has already terminated, then wait returns its pid
immediately

m If child status != NULL, then the object it points to will
be set to a status indicating why the child process
terminated

_ 19— 15-213, F'02

wait: Synchronizing with children

void fork9 () {
int child status;

if (fork() == 0) {
printf ("HC: hello from child\n");
}

else {
printf ("HP: hello from parent\n");
wait (&child status);
printf ("CT: child has terminated\n") ;

}
printf ("Bye\n") ; HC Bye

S
J HP CT Bye

_ 20— 15-213, F'02

wait: reaping children

int wait(int *child status)

® If the child has already terminated, then wait returns
its pid immediately

® What if many children have terminated?
m Will wait reliably return pids of all terminated children?
m Is it possible to lose some?

® Terminated child processes turn into zombies
m Wait reaps the zombies

oq 15-213, F’02

Still more on wait

What ‘wait’ is really waiting for is a SIGCHLD signal.
Other signals can also cause wait to return.

When wait returns, check to see if it really returns the
pid of a child process

m Otherwise, it could have been some other signal

—_2o_ 15-213, F’02

Multitasking

The System Runs Many Processes Concurrently

State consists of memory image + register values
m general registers

m system registers include program counter, pointer to page
tables, ...

The kernel continually switches from one process to
another

m Sometimes a process blocks waiting for I/0
m Sometimes the timer pre-empts a process

To us, observing from outside the computer, it appears
that all processes are running concurrently.

—23— 15-213, F’02

Unix Startup: Step 1

1. Pushing reset button loads the pPC with the address of a small
bootstrap program.

2. Bootstrap program loads the operating system kernel from the
file system, or maybe a secondary bootstrap program

3. Bootstrap program passes control to kernel.

5. Kernel handcrafts “process 0.”

[0] Process 0: handcrafted kernel process

>~ Process 0 forks child process 1

J

@ Child process 1 execs /sbin/init

—_ 24 — 15-213, F’02

Unix Startup: Step 2

Daemons

*
‘e

taa, et
.
» s
L]
Taag, ann®
"Essmsmmmmunnt®

_ 25—

~.e.g. ftpd, httpd .

[0]

/etc/inittab —» initE

e

init forks and execs

daemons per
/etc/inittab, and forks

and execs a getty program
for the console

15-213, F’02

Unix Startup: Step 3

[0]

— 26 —

The getty process
execs a login
program

15-213, F’02

Unix Startup: Step 4

[0]

— 27—

login reads login and passwd.
if OK, it execs a shell.
if not OK, it execs another getty

15-213, F’02

Unix Process Hierarchy

[0]

initE

Login shell

Child m
Carandetid (Grandehitd >

et
o
.
.

—_ 28—

15-213, F’02

So the kernel never spontaneously creates a process,
except for process zero.

The kernel creates a process when some existing
process calls fork().

— 29— 15-213, F’02

Programmer’s Model of Multitasking

Basic Functions

m fork () spawns new process
e Called once, returns twice

e Parent and child process both resume running where fork()
returns.

m exit () terminates the process that calls it
e Called once, never returns

m wait () and waitpid () wait for and reap terminated
children

B execl(),execv(), and friends
® run a new program in an existing process
e Called once, normally never returns

_130— 15-213, F'02

Example: Shell Programs

A shellis an application program that runs programs on
behalf of the user.
m sh — Original Unix Bourne Shell
m csh - BSD Unix C Shell, tesh - Enhanced C Shell

m bash —-Bourne-Again Shell
int main()

char cmdline[MAXLINE] ;

while (1) {
/* read */

printf£ ("> V) ; Execution is a sequence of
fgets (cmdline, MAXLINE, read/evaluate steps
stdin) ;
if (feof (stdin))
exit (0) ;

eval (cmdline) ;

3q 15-213, F'02

Simple Shell eval Function

void eval (char *cmdline)

{
char *argv[MAXARGS]; /* argv for execve() */
int bg; /* should the job run in bg or fg? */
pid t pid; /* process id */

bg = parseline(cmdline, argv) ;
if ('builtin command (argv)) {
if ((pid = Fork()) == 0) { /* child runs user job */
if (execve(argv[0], argv, environ) < 0) {
printf ("%$s: Command not found.\n", argv[0]);
exit (0) ;

}

if ('bg) { /* parent waits for fg job to terminate */
int status;
if (waitpid(pid, &status, 0) < 0)
unix error ("waitfg: waitpid error");
}
else /* otherwise, don’t wait for bg job */
printf ("%d %s", pid, cmdline) ;

—oc — IV i1, 1 v

Summarizing

Processes
m At any given time, a system can have multiple active processes

m Only one can execute at a time, though
® Per CPU, thatis

m Each process, from its own point of view, appears to have total
control of a virtual computer
® A CPU, including its registers
e A virtual memory space

— 33— 15-213, F’02

Summarizing (cont.)

Spawning Processes

m Call to fork
® One call, two returns

Terminating Processes

m Call exit
® One call, no return

Reaping Processes
m Call wait or waitpid

Replacing Program Executed by Process

m Call execl (or variant)
® One call, normally no return

—34 - 15-213, F'02

