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There’s more to performance
than asymptotic complexity

Constant factors matter too!Constant factors matter too!
 Factor of 10 improvement is possible depending on how

code is written
 Must optimize at multiple levels:

 algorithm, data representations, procedures, and loops

Must understand system to optimize performanceMust understand system to optimize performance
 How programs are compiled and executed
 How to measure program performance and identify

bottlenecks
 How to improve performance without destroying code

modularity and generality
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Optimizing Compilers
Provide efficient mapping of program to machineProvide efficient mapping of program to machine

 register allocation
 code selection and ordering

DonDon’’t (usually) improve asymptotic efficiencyt (usually) improve asymptotic efficiency
 The programmer must select a good algorithm
 big-O savings are more important than constant factors

 but constant factors also matter

Compilers have difficulty overcoming Compilers have difficulty overcoming ““optimizationoptimization
blockersblockers””
 potential memory aliasing
 potential procedure side-effects
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Limitations of Optimizing Compilers
Fundamental Constraint:Fundamental Constraint:

 Must not cause any change in program behavior under any
possible condition

 Even pathological conditions.

Most analysis is performed only within proceduresMost analysis is performed only within procedures
 whole-program analysis is too expensive

Most analysis is based only on Most analysis is based only on staticstatic information information
 The compiler does’t anticipate run-time inputs
 The programmer knows more about constraints on the data

than the compiler.

When in doubt, the compiler must be conservativeWhen in doubt, the compiler must be conservative



– 5 – 15-213, F’02

Compiler-Generated Code Motion
 Most compilers do a good job with array code and simple

loop structures

Code Generated by GCCCode Generated by GCC
for (i = 0; i < n; i++)
  for (j = 0; j < n; j++)
    a[n*i + j] = b[j];

  imull %ebx,%eax # i*n
  movl 8(%ebp),%edi # a
  leal (%edi,%eax,4),%edx # p = a+i*n (scaled by 4)
# Inner Loop
.L40:
  movl 12(%ebp),%edi # b
  movl (%edi,%ecx,4),%eax # b+j  (scaled by 4)
  movl %eax,(%edx) # *p = b[j]
  addl $4,%edx # p++  (scaled by 4)
  incl %ecx # j++
  jl .L40                 # loop if j<n

for (i = 0; i < n; i++) {
  int ni = n*i;
  int *p = a+ni;
  for (j = 0; j < n; j++)
    *p++ = b[j];
}
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Reduction in Strength
 Replace costly operation with simpler one
 Shift, add instead of multiply or divide

16*x --> x << 4
 The utility of this is machine dependent
 On Pentium II or III, integer multiply only requires 4 CPU cycles

 Recognize sequence of products
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Reduction in
Strength

int
foo(int a[], int b[], int n)
{
    int i, j;
    for (i = 0; i < n;i++)
      for (j = 0; j < n; j++)
          a[n*i + j]=b[j];
}

    movl    16(%ebp), %ebx
    xorl    %esi, %esi
    cmpl    %ebx, %esi
    jge    .L11
    movl    $0, -16(%ebp)
.L9:
    xorl    %ecx, %ecx
    cmpl    %ebx, %ecx
    jge    .L13
    movl    -16(%ebp), %eax
    movl    8(%ebp), %edi
    leal    (%edi,%eax,4), %edx
.L8:
    movl    12(%ebp), %edi
    movl    (%edi,%ecx,4), %eax
    incl    %ecx
    movl    %eax, (%edx)
    addl    $4, %edx
    cmpl    %ebx, %ecx
    jl    .L8
.L13:
    incl    %esi
    addl    %ebx, -16(%ebp)
    cmpl    %ebx, %esi
    jl    .L9
.L11:   # all done

Write C code to show
what the compiler
generated.
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Make Use of Registers
 Reading and writing registers is much faster than

reading/writing memory

LimitationLimitation
 Compiler not always able to determine whether variable can

be held in register
 Possibility of Aliasing
 See example later

Another limitation in the case of Intel processorsAnother limitation in the case of Intel processors
 Almost no registers
 You have to make use of cache
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Machine-Independent Opts. (Cont.)
Share Common Share Common SubexpressionsSubexpressions

 Reuse portions of expressions
 Compilers often not very sophisticated in exploiting

arithmetic properties
/* Sum neighbors of i,j */
up =    val[(i-1)*n + j];
down =  val[(i+1)*n + j];
left =  val[i*n   + j-1];
right = val[i*n   + j+1];
sum = up + down + left + right;

How can we change this code so it doesn’t do 3 multiplications?

  leal -1(%edx),%ecx  # i-1
  imull %ebx,%ecx     # (i-1)*n
  leal 1(%edx),%eax   # i+1
  imull %ebx,%eax     # (i+1)*n
  imull %ebx,%edx     # i*n
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Example

Data type:  vector, illustrated aboveData type:  vector, illustrated above
ProceduresProcedures

vec_ptr new_vec(int len)
 Create vector of specified length

int get_vec_element(vec_ptr v, int index, int *dest)
 Retrieve vector element, store at *dest
 Return 0 if out of bounds, 1 if successful

int *get_vec_start(vec_ptr v)
 Return pointer to start of vector data

 Structured programming
 Hide the implementation of the array
 Always do bounds checking

length
data • • •

0 1 2 length–1
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Optimization Example

ProcedureProcedure
 Compute sum of all elements of integer vector
 Store result at destination location
 Vector data structure and operations defined via abstract data

type

Pentium II/III Performance: Clock Cycles / ElementPentium II/III Performance: Clock Cycles / Element
 42.06 (Compiled -g) 31.25 (Compiled -O2)

void combine1(vec_ptr v, int *dest)
{
  int i;
  *dest = 0;
  for (i = 0; i < vec_length(v); i++) {
    int val;
    get_vec_element(v, i, &val);
    *dest += val;
  }
}
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Understanding the “for” Loop

InefficiencyInefficiency
 Procedure vec_length is called every iteration
 Even though result is always the same

void combine1-goto(vec_ptr v, int
*dest)
{
    int i = 0;
    int val;
    *dest = 0;
    if (i >= vec_length(v))
      goto done;
  loop:
    get_vec_element(v, i, &val);
    *dest += val;
    i++;
    if (i < vec_length(v))
      goto loop
  done:
}

1 iteration
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Exercise
Write a function Write a function combine2combine2 that does the same thing as that does the same thing as

combine1, combine1, without calling vec_length on eachwithout calling vec_length on each
iteration.iteration.
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Move vec_length Call Out of Loop

OptimizationOptimization
 Move call to vec_length out of inner loop

Value does not change from one iteration to next
Code motion

 CPE:   20.66 (Compiled -O2)
 vec_length requires only constant time, but significant overhead
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void lower(char *s)
{
  int i;
  for (i = 0; i < strlen(s); i++)
    if (s[i] >= 'A' && s[i] <= 'Z')
      s[i] -= ('A' - 'a');
}

Code Motion Example #2
Procedure to Convert String to Lower CaseProcedure to Convert String to Lower Case
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Lower Case Conversion Performance

 Time quadruples when double string length
 Quadratic performance

lower1
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Exercise

 Why is the time proportional to the square of the string
length?

 How can you optimize the function to make it linear?
 Write the optimized code.
 Why can’t the compiler do that optimization?
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Lower Case Conversion Performance
 Time doubles when double string length
 Linear performance
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Optimization Blocker: Procedure Calls
Compiler treats procedure call as a black boxCompiler treats procedure call as a black box

 Weak optimizations in and around them

Why?Why?
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Reduction in Strength

OptimizationOptimization
 Avoid procedure call to retrieve each vector element

Get pointer to start of array before loop
Not as clean in terms of data abstraction

» Makes assumption about what a vector looks like internally
 CPE:   6.00 (Compiled -O2)

Procedure calls are expensive!
Bounds checking is expensive

void combine3(vec_ptr v, int *dest)
{
  int i;
  int length = vec_length(v);
  int *data = get_vec_start(v);
  *dest = 0;
  for (i = 0; i < length; i++) {
    *dest += data[i];
}
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Eliminate Unneeded Memory Refs

OptimizationOptimization
 How many memory references does this avoid per element?
 How does it avoid them?
 CPE:   2.00 (Compiled -O2)

Memory references are expensive!

void combine4(vec_ptr v, int *dest)
{
  int i;
  int length = vec_length(v);
  int *data = get_vec_start(v);
  int sum = 0;
  for (i = 0; i < length; i++)
    sum += data[i];
  *dest = sum;
}
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Detecting Unneeded Memory Refs.

PerformancePerformance
 Combine3

5 instructions in 6 (or more) clock cycles
addl must read memory and write to cache

» With 200 mhz CPU, a cache miss can entail up to 30 cycles
 Combine4

4 instructions in  2 clock cycles

.L18:
movl (%ecx,%edx,4),%eax
addl %eax,(%edi)
incl %edx
cmpl %esi,%edx
jl .L18

Combine3

.L24:
addl (%eax,%edx,4),%ecx

incl %edx
cmpl %esi,%edx
jl .L24

Combine4
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Optimization Blocker: Memory Aliasing
AliasingAliasing

 Two different memory references specify single location

ExampleExample
 v: [3, 2, 17]

 combine3(v, get_vec_start(v)+2)

 What’s the problem?

ObservationsObservations
 Easy for this to happen in C, with address arithmetic
 Get in habit of introducing local variables

Accumulating within loops
Your way of telling compiler it can optimize to its heart’s content
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Machine-Independent Opt. Summary
Code MotionCode Motion

 Compilers are good at this for simple loop/array structures
 Local variables, no possible side effects

 Don’t do well in presence of procedure calls and memory aliasing

Reduction in StrengthReduction in Strength
 Shift, add instead of multiply or divide

 compilers are (generally) good at this
 Exact trade-offs are machine-dependent

Keep data in registers rather than memoryKeep data in registers rather than memory
 compilers are not good at this, concerned with aliasing

Share Common Share Common SubexpressionsSubexpressions
 compilers have limited algebraic reasoning capabilities
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Important Tools
MeasurementMeasurement

 Accurately compute time taken by code
Most modern machines have built in cycle counters
Using them to get reliable measurements is tricky

 Profile procedure calling frequencies
Unix tool gprof

ObservationObservation
 Generating assembly code

Lets you see what optimizations compiler can make
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Code Profiling Example
TaskTask

 Count word frequencies in text document
 Produce sorted list of words from most frequent to least

StepsSteps
 Convert strings to lowercase
 Apply hash function
 Read words and insert into hash table

 Mostly list operations
 Maintain counter for each unique word

 Sort results

Data SetData Set
 Collected works of Shakespeare
 946,596 total words, 26,596 unique
 Initial implementation: 9.2 seconds

thatthat11,51911,519
inin11,72211,722
mymy12,93612,936
youyou1401014010
aa15,37015,370
ofof18,51418,514
toto20,95720,957
II21,02921,029
andand27,52927,529
thethe29,80129,801

Shakespeare’s
most frequent words
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Code Profiling
Augment Executable Program with Timing FunctionsAugment Executable Program with Timing Functions

 Computes (approximate) amount of time spent in each
function

 Time computation method
 Periodically (~ every 10ms) interrupt program
 Determine what function is currently executing
 Increment its timer by interval (e.g., 10ms)

 Also maintains counter for each function indicating number
of times called

UsingUsing
gcc –O2 –pg prog.c –o prog
./prog

 Executes in normal fashion, but also generates file gmon.out
gprof prog

 Generates profile information based on gmon.out
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Profiling Results

Call StatisticsCall Statistics
 Number of calls and total time for each function

sort_words, called just once, uses 87% of CPU timesort_words, called just once, uses 87% of CPU time
Where do you think we should focus our optimizationWhere do you think we should focus our optimization

efforts?efforts?

 %   cumulative   self              self     total           
 time   seconds   seconds    calls  ms/call  ms/call  name    
 86.60      8.21     8.21        1  8210.00  8210.00  sort_words
  5.80      8.76     0.55   946596     0.00     0.00  lower1
  4.75      9.21     0.45   946596     0.00     0.00  find_ele_rec
  1.27      9.33     0.12   946596     0.00     0.00  h_add
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What Profiling is Good For
AmdahlAmdahl’’s Laws Law

 The performance enhancement possible with a given
improvement limited by the amount that the improved
feature is used

Suppose a module requires a fraction Suppose a module requires a fraction αα of the total of the total
time, and we improve its performance by a factor of ktime, and we improve its performance by a factor of k
 Tnew = (1 – α)Told + (αTold)/k
            = Told[(1 – α) + α/k]
    Speedup = [(1 – α) + α/k]-1

 As α  0,  Speedup  1, regardless of k
 As α  1,  Speedup  k
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Profiling Observations
BenefitsBenefits

 Helps identify performance bottlenecks
 Especially useful with a complex system with many

components

LimitationsLimitations
 Only shows performance for data tested

 Quadratic inefficiency could remain lurking in code
 Timing mechanism fairly crude

 Only works for programs that run for > 3 seconds
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Is it really a good idea to move code
around to save some CPU cycles?

How often is it worthwhile to sacrifice maintainabilityHow often is it worthwhile to sacrifice maintainability
for a linear performance improvement?for a linear performance improvement?
 Almost never.
 If you’re writing specialized library code, for example.

Why is it good to understand these concepts?Why is it good to understand these concepts?
 Using local variables and avoiding possible side effects is a

good habit in general
 If the compiler can do good optimizations, it’s a sign that the

code is well-structrured
 Optimizable code is not necessarily un-maintainable

 Every once in a while you run into a bottleneck or a
performance anomaly that you need to understand.


