
CS 201

 Code Optimization,
Part 1

Gerson Robboy
Portland State University

– 2 – 15-213, F’02

There’s more to performance
than asymptotic complexity

Constant factors matter too!Constant factors matter too!
 Factor of 10 improvement is possible depending on how

code is written
 Must optimize at multiple levels:

 algorithm, data representations, procedures, and loops

Must understand system to optimize performanceMust understand system to optimize performance
 How programs are compiled and executed
 How to measure program performance and identify

bottlenecks
 How to improve performance without destroying code

modularity and generality

– 3 – 15-213, F’02

Optimizing Compilers
Provide efficient mapping of program to machineProvide efficient mapping of program to machine

 register allocation
 code selection and ordering

DonDon’’t (usually) improve asymptotic efficiencyt (usually) improve asymptotic efficiency
 The programmer must select a good algorithm
 big-O savings are more important than constant factors

 but constant factors also matter

Compilers have difficulty overcoming Compilers have difficulty overcoming ““optimizationoptimization
blockersblockers””
 potential memory aliasing
 potential procedure side-effects

– 4 – 15-213, F’02

Limitations of Optimizing Compilers
Fundamental Constraint:Fundamental Constraint:

 Must not cause any change in program behavior under any
possible condition

 Even pathological conditions.

Most analysis is performed only within proceduresMost analysis is performed only within procedures
 whole-program analysis is too expensive

Most analysis is based only on Most analysis is based only on staticstatic information information
 The compiler does’t anticipate run-time inputs
 The programmer knows more about constraints on the data

than the compiler.

When in doubt, the compiler must be conservativeWhen in doubt, the compiler must be conservative

– 5 – 15-213, F’02

Compiler-Generated Code Motion
 Most compilers do a good job with array code and simple

loop structures

Code Generated by GCCCode Generated by GCC
for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 a[n*i + j] = b[j];

 imull %ebx,%eax # i*n
 movl 8(%ebp),%edi # a
 leal (%edi,%eax,4),%edx # p = a+i*n (scaled by 4)
Inner Loop
.L40:
 movl 12(%ebp),%edi # b
 movl (%edi,%ecx,4),%eax # b+j (scaled by 4)
 movl %eax,(%edx) # *p = b[j]
 addl $4,%edx # p++ (scaled by 4)
 incl %ecx # j++
 jl .L40 # loop if j<n

for (i = 0; i < n; i++) {
 int ni = n*i;
 int *p = a+ni;
 for (j = 0; j < n; j++)
 *p++ = b[j];
}

– 6 – 15-213, F’02

Reduction in Strength
 Replace costly operation with simpler one
 Shift, add instead of multiply or divide

16*x --> x << 4
 The utility of this is machine dependent
 On Pentium II or III, integer multiply only requires 4 CPU cycles

 Recognize sequence of products

– 7 – 15-213, F’02

Reduction in
Strength

int
foo(int a[], int b[], int n)
{
 int i, j;
 for (i = 0; i < n;i++)
 for (j = 0; j < n; j++)
 a[n*i + j]=b[j];
}

 movl 16(%ebp), %ebx
 xorl %esi, %esi
 cmpl %ebx, %esi
 jge .L11
 movl $0, -16(%ebp)
.L9:
 xorl %ecx, %ecx
 cmpl %ebx, %ecx
 jge .L13
 movl -16(%ebp), %eax
 movl 8(%ebp), %edi
 leal (%edi,%eax,4), %edx
.L8:
 movl 12(%ebp), %edi
 movl (%edi,%ecx,4), %eax
 incl %ecx
 movl %eax, (%edx)
 addl $4, %edx
 cmpl %ebx, %ecx
 jl .L8
.L13:
 incl %esi
 addl %ebx, -16(%ebp)
 cmpl %ebx, %esi
 jl .L9
.L11: # all done

Write C code to show
what the compiler
generated.

– 8 – 15-213, F’02

Make Use of Registers
 Reading and writing registers is much faster than

reading/writing memory

LimitationLimitation
 Compiler not always able to determine whether variable can

be held in register
 Possibility of Aliasing
 See example later

Another limitation in the case of Intel processorsAnother limitation in the case of Intel processors
 Almost no registers
 You have to make use of cache

– 9 – 15-213, F’02

Machine-Independent Opts. (Cont.)
Share Common Share Common SubexpressionsSubexpressions

 Reuse portions of expressions
 Compilers often not very sophisticated in exploiting

arithmetic properties
/* Sum neighbors of i,j */
up = val[(i-1)*n + j];
down = val[(i+1)*n + j];
left = val[i*n + j-1];
right = val[i*n + j+1];
sum = up + down + left + right;

How can we change this code so it doesn’t do 3 multiplications?

 leal -1(%edx),%ecx # i-1
 imull %ebx,%ecx # (i-1)*n
 leal 1(%edx),%eax # i+1
 imull %ebx,%eax # (i+1)*n
 imull %ebx,%edx # i*n

– 10 – 15-213, F’02

Example

Data type: vector, illustrated aboveData type: vector, illustrated above
ProceduresProcedures

vec_ptr new_vec(int len)
 Create vector of specified length

int get_vec_element(vec_ptr v, int index, int *dest)
 Retrieve vector element, store at *dest
 Return 0 if out of bounds, 1 if successful

int *get_vec_start(vec_ptr v)
 Return pointer to start of vector data

 Structured programming
 Hide the implementation of the array
 Always do bounds checking

length
data • • •

0 1 2 length–1

– 11 – 15-213, F’02

Optimization Example

ProcedureProcedure
 Compute sum of all elements of integer vector
 Store result at destination location
 Vector data structure and operations defined via abstract data

type

Pentium II/III Performance: Clock Cycles / ElementPentium II/III Performance: Clock Cycles / Element
 42.06 (Compiled -g) 31.25 (Compiled -O2)

void combine1(vec_ptr v, int *dest)
{
 int i;
 *dest = 0;
 for (i = 0; i < vec_length(v); i++) {
 int val;
 get_vec_element(v, i, &val);
 *dest += val;
 }
}

– 12 – 15-213, F’02

Understanding the “for” Loop

InefficiencyInefficiency
 Procedure vec_length is called every iteration
 Even though result is always the same

void combine1-goto(vec_ptr v, int
*dest)
{
 int i = 0;
 int val;
 *dest = 0;
 if (i >= vec_length(v))
 goto done;
 loop:
 get_vec_element(v, i, &val);
 *dest += val;
 i++;
 if (i < vec_length(v))
 goto loop
 done:
}

1 iteration

– 13 – 15-213, F’02

Exercise
Write a function Write a function combine2combine2 that does the same thing as that does the same thing as

combine1, combine1, without calling vec_length on eachwithout calling vec_length on each
iteration.iteration.

– 14 – 15-213, F’02

Move vec_length Call Out of Loop

OptimizationOptimization
 Move call to vec_length out of inner loop

Value does not change from one iteration to next
Code motion

 CPE: 20.66 (Compiled -O2)
 vec_length requires only constant time, but significant overhead

– 15 – 15-213, F’02

void lower(char *s)
{
 int i;
 for (i = 0; i < strlen(s); i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
}

Code Motion Example #2
Procedure to Convert String to Lower CaseProcedure to Convert String to Lower Case

– 16 – 15-213, F’02

Lower Case Conversion Performance

 Time quadruples when double string length
 Quadratic performance

lower1

0.0001

0.001

0.01

0.1

1

10

100

1000

256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144

String Length

C
P

U
 S

e
c
o

n
d

s

– 17 – 15-213, F’02

Exercise

 Why is the time proportional to the square of the string
length?

 How can you optimize the function to make it linear?
 Write the optimized code.
 Why can’t the compiler do that optimization?

– 18 – 15-213, F’02

Lower Case Conversion Performance
 Time doubles when double string length
 Linear performance

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144

String Length

C
P

U
 S

e
c

o
n

d
s

lower1 lower2

– 19 – 15-213, F’02

Optimization Blocker: Procedure Calls
Compiler treats procedure call as a black boxCompiler treats procedure call as a black box

 Weak optimizations in and around them

Why?Why?

– 20 – 15-213, F’02

Reduction in Strength

OptimizationOptimization
 Avoid procedure call to retrieve each vector element

Get pointer to start of array before loop
Not as clean in terms of data abstraction

» Makes assumption about what a vector looks like internally
 CPE: 6.00 (Compiled -O2)

Procedure calls are expensive!
Bounds checking is expensive

void combine3(vec_ptr v, int *dest)
{
 int i;
 int length = vec_length(v);
 int *data = get_vec_start(v);
 *dest = 0;
 for (i = 0; i < length; i++) {
 *dest += data[i];
}

– 21 – 15-213, F’02

Eliminate Unneeded Memory Refs

OptimizationOptimization
 How many memory references does this avoid per element?
 How does it avoid them?
 CPE: 2.00 (Compiled -O2)

Memory references are expensive!

void combine4(vec_ptr v, int *dest)
{
 int i;
 int length = vec_length(v);
 int *data = get_vec_start(v);
 int sum = 0;
 for (i = 0; i < length; i++)
 sum += data[i];
 *dest = sum;
}

– 22 – 15-213, F’02

Detecting Unneeded Memory Refs.

PerformancePerformance
 Combine3

5 instructions in 6 (or more) clock cycles
addl must read memory and write to cache

» With 200 mhz CPU, a cache miss can entail up to 30 cycles
 Combine4

4 instructions in 2 clock cycles

.L18:
movl (%ecx,%edx,4),%eax
addl %eax,(%edi)
incl %edx
cmpl %esi,%edx
jl .L18

Combine3

.L24:
addl (%eax,%edx,4),%ecx

incl %edx
cmpl %esi,%edx
jl .L24

Combine4

– 23 – 15-213, F’02

Optimization Blocker: Memory Aliasing
AliasingAliasing

 Two different memory references specify single location

ExampleExample
 v: [3, 2, 17]

 combine3(v, get_vec_start(v)+2)

 What’s the problem?

ObservationsObservations
 Easy for this to happen in C, with address arithmetic
 Get in habit of introducing local variables

Accumulating within loops
Your way of telling compiler it can optimize to its heart’s content

– 24 – 15-213, F’02

Machine-Independent Opt. Summary
Code MotionCode Motion

 Compilers are good at this for simple loop/array structures
 Local variables, no possible side effects

 Don’t do well in presence of procedure calls and memory aliasing

Reduction in StrengthReduction in Strength
 Shift, add instead of multiply or divide

 compilers are (generally) good at this
 Exact trade-offs are machine-dependent

Keep data in registers rather than memoryKeep data in registers rather than memory
 compilers are not good at this, concerned with aliasing

Share Common Share Common SubexpressionsSubexpressions
 compilers have limited algebraic reasoning capabilities

– 25 – 15-213, F’02

Important Tools
MeasurementMeasurement

 Accurately compute time taken by code
Most modern machines have built in cycle counters
Using them to get reliable measurements is tricky

 Profile procedure calling frequencies
Unix tool gprof

ObservationObservation
 Generating assembly code

Lets you see what optimizations compiler can make

– 26 – 15-213, F’02

Code Profiling Example
TaskTask

 Count word frequencies in text document
 Produce sorted list of words from most frequent to least

StepsSteps
 Convert strings to lowercase
 Apply hash function
 Read words and insert into hash table

 Mostly list operations
 Maintain counter for each unique word

 Sort results

Data SetData Set
 Collected works of Shakespeare
 946,596 total words, 26,596 unique
 Initial implementation: 9.2 seconds

thatthat11,51911,519
inin11,72211,722
mymy12,93612,936
youyou1401014010
aa15,37015,370
ofof18,51418,514
toto20,95720,957
II21,02921,029
andand27,52927,529
thethe29,80129,801

Shakespeare’s
most frequent words

– 27 – 15-213, F’02

Code Profiling
Augment Executable Program with Timing FunctionsAugment Executable Program with Timing Functions

 Computes (approximate) amount of time spent in each
function

 Time computation method
 Periodically (~ every 10ms) interrupt program
 Determine what function is currently executing
 Increment its timer by interval (e.g., 10ms)

 Also maintains counter for each function indicating number
of times called

UsingUsing
gcc –O2 –pg prog.c –o prog
./prog

 Executes in normal fashion, but also generates file gmon.out
gprof prog

 Generates profile information based on gmon.out

– 28 – 15-213, F’02

Profiling Results

Call StatisticsCall Statistics
 Number of calls and total time for each function

sort_words, called just once, uses 87% of CPU timesort_words, called just once, uses 87% of CPU time
Where do you think we should focus our optimizationWhere do you think we should focus our optimization

efforts?efforts?

 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 86.60 8.21 8.21 1 8210.00 8210.00 sort_words
 5.80 8.76 0.55 946596 0.00 0.00 lower1
 4.75 9.21 0.45 946596 0.00 0.00 find_ele_rec
 1.27 9.33 0.12 946596 0.00 0.00 h_add

– 29 – 15-213, F’02

What Profiling is Good For
AmdahlAmdahl’’s Laws Law

 The performance enhancement possible with a given
improvement limited by the amount that the improved
feature is used

Suppose a module requires a fraction Suppose a module requires a fraction αα of the total of the total
time, and we improve its performance by a factor of ktime, and we improve its performance by a factor of k
 Tnew = (1 – α)Told + (αTold)/k
 = Told[(1 – α) + α/k]
 Speedup = [(1 – α) + α/k]-1

 As α  0, Speedup  1, regardless of k
 As α  1, Speedup  k

– 30 – 15-213, F’02

Profiling Observations
BenefitsBenefits

 Helps identify performance bottlenecks
 Especially useful with a complex system with many

components

LimitationsLimitations
 Only shows performance for data tested

 Quadratic inefficiency could remain lurking in code
 Timing mechanism fairly crude

 Only works for programs that run for > 3 seconds

– 31 – 15-213, F’02

Is it really a good idea to move code
around to save some CPU cycles?

How often is it worthwhile to sacrifice maintainabilityHow often is it worthwhile to sacrifice maintainability
for a linear performance improvement?for a linear performance improvement?
 Almost never.
 If you’re writing specialized library code, for example.

Why is it good to understand these concepts?Why is it good to understand these concepts?
 Using local variables and avoiding possible side effects is a

good habit in general
 If the compiler can do good optimizations, it’s a sign that the

code is well-structrured
 Optimizable code is not necessarily un-maintainable

 Every once in a while you run into a bottleneck or a
performance anomaly that you need to understand.

