
Memory Management
Gerson Robboy

Portland State University
TopicsTopics

 P6 address translation
 Linux memory management
 Linux page fault handling
 memory mapping

class20.ppt

– 2 – 15-213, F’02

Building the Address Space

Source
code

•Load time:
•Allocate primary memory
•Adjust addresses in address space
•Copy address space from secondary to primary memory

Loader Process
address
space

Primary
memory

C

Reloc
Object
code

Link
Edit

Library
code

Other
objects

Secondary
 memory

– 3 – 15-213, F’02

Going way back in history

Operating
System

Process

Unused
In Use

Limited versatility.

– 4 – 15-213, F’02

With multiple processes

Operating
System

Process 3

Process 0

Process 2

Process 1

Unused
In Use

Issue: Where do you load
pi’s address space into
primary memory?

pi

– 5 – 15-213, F’02

Dynamic Memory Allocation

Process wants to change the size of its addressProcess wants to change the size of its address
spacespace
 Malloc/sbrk
 Stack growth – temporary variables

May have to dynamically relocate the programMay have to dynamically relocate the program

– 6 – 15-213, F’02

A System with Physical Memory Only
Examples:Examples:

 most Cray machines, early PCs, nearly all embedded systems

 Addresses generated by the CPU correspond directly to bytes in
physical memory

CPU

0:
1:

N-1:

Memory

Physical
Addresses

– 7 – 15-213, F’02

Some problems with physical memory only

 With multi-tasking, you have to dynamically relocate
programs when loading them.

 If the stack overflows the area allocated for it, we’re in
trouble.

 The same with the heap.
 With swapping, you have to dynamically relocate programs

each time they are swapped in.
 Is that even possible? How would you handle locally declared

pointers?

– 8 – 15-213, F’02

VM Address Translation

Processor

On-chip
MMU

Main
Memorya

a'

physical addressvirtual address

– 9 – 15-213, F’02

A System with Virtual Memory
Examples:Examples:

 workstations, servers, modern PCs, etc.

 Address Translation: Hardware converts virtual addresses to
physical addresses via a lookup table (page table)

CPU

0:
1:

N-1:

Memory

0:
1:

P-1:

Page Table

Disk

Virtual
Addresses Physical

Addresses

– 10 – 15-213, F’02

Example
32 bit addresses, page size is 4096 = 0x100032 bit addresses, page size is 4096 = 0x1000
How many bits is the offset into a page?How many bits is the offset into a page?
A page-aligned address has how many low order zeroA page-aligned address has how many low order zero

bits?bits?

– 11 – 15-213, F’02

Example
32 bit addresses, page size is 4096 = 0x100032 bit addresses, page size is 4096 = 0x1000
Consider some address: 0x3e80a123Consider some address: 0x3e80a123
Low order 12 bits: offset within the page: 0x123Low order 12 bits: offset within the page: 0x123
Address with low order 12 bits masked out: address ofAddress with low order 12 bits masked out: address of

the page: 0x3e80a000the page: 0x3e80a000
High order 20 bits alone are the page number: 0x3e80aHigh order 20 bits alone are the page number: 0x3e80a

– 12 – 15-213, F’02

Previous example continued
32 bit addresses, 4K pages32 bit addresses, 4K pages
Page table = 1 pagePage table = 1 page

 1 page = 4096 bytes/4 byte entry = 1024 entries
 1024 entries x 4096 bytes = 4 MB of virtual memory per page

table

4 MB X 1024 page tables = 4GB memory space4 MB X 1024 page tables = 4GB memory space

– 13 – 15-213, F’02

Clarification
Page tables and page directories are data structures inPage tables and page directories are data structures in

memory.memory.
The O. S. kernel (software) sets them up and managesThe O. S. kernel (software) sets them up and manages

them.them.
The format of the contents is defined by hardware.The format of the contents is defined by hardware.
The hardware uses them on every memory reference, toThe hardware uses them on every memory reference, to

convert a virtual address to a physical address.convert a virtual address to a physical address.
The PDBR tells the hardware where to look.The PDBR tells the hardware where to look.

– 14 – 15-213, F’02

Implications for memory management
To allocate memory for a process, now the O. S.To allocate memory for a process, now the O. S.

doesndoesn’’t have to manage contiguous blocks oft have to manage contiguous blocks of
memory.memory.

All it has to do is find a set of available pagesAll it has to do is find a set of available pages
 The pages can be scattered all over the place
 The pages are mapped into contiguous virtual memory

regions.
 No more fragmentation

Analogous to allocating files on a disk Analogous to allocating files on a disk –– fixed size fixed size
blocks.blocks.

– 15 – 15-213, F’02

What this means for linking/loading
The linker binds programs to absolute addresses.The linker binds programs to absolute addresses.

 No relocation at load time.
 No allocation of memory segments at load time.

kernel virtual memory

Memory mapped region
forshared libraries

runtime heap (via malloc)

program text (.text)
initialized data (.data)

uninitialized data (.bss)

stack

forbidden
0

%esp

memory invisible to
 user code

the “brk” ptr

All
processes
look just

like this in
virtual

memory

– 16 – 15-213, F’02

How ia32 Maps Virtual
Addresses to Physical Ones

PDE

PDBR
physical address
of page table base
(if P=1)

physical
address
of page base
(if P=1)

physical address
of page directory

word offset into
page directory

word offset into
page table

page directory page table

VPN1
10

VPO
10 12

VPN2 Virtual address

PTE

PPN PPO

20 12
Physical address

word offset into
physical and virtual
page

– 17 – 15-213, F’02

Exercise
Suppose a computer has 16-bit virtual addresses, 16-bitSuppose a computer has 16-bit virtual addresses, 16-bit

physical addresses, a page size of 64 bytes, and two-physical addresses, a page size of 64 bytes, and two-
level page tables, like a pentium.level page tables, like a pentium.
 How many bits is the VPO?
 How many entries in a page table?
 How many bits is VPN0?
 How many bits is VPN1?

– 18 – 15-213, F’02
222222079079
111111021021
180180011011
170170077077
160160099099
260260088088
270270136136
280280079079
290290078078
292292135135
202202134134
222222133133
232232200200
121121100100
212212091091
088088282282

Previous exercise continued:
Here is a page table (in 2 columns so
it fits on the slide). Consider virtual
address 0x3e72. Suppose VPN1
points to a PDE which points to this
page table.
The page table contains 10-bit page
numbers, shown in hexadecimal.
To what physical address
does V. A. 0x3e72 translate?

Entry 31

Entry
0

Entry 16

15

– 19 – 15-213, F’02

Some Arithmetic
VPO of 12 bits VPO of 12 bits  A page is 4096 bytes A page is 4096 bytes
Each PD and PT occupies one page.Each PD and PT occupies one page.
Each PDE and PTE is 32 bits (4 bytes) Each PDE and PTE is 32 bits (4 bytes) 

 Each page directory contains 1024 PDEs
 Each page table contains 1024 PTEs
 Each page table points to 1024 pages

1024 pages * 4Kbytes = 4 MB covered by a page table1024 pages * 4Kbytes = 4 MB covered by a page table
4MB * 1024 PDEs = 4 GB memory space covered by a4MB * 1024 PDEs = 4 GB memory space covered by a

page directory.page directory.

– 20 – 15-213, F’02

ia32 Page Table Structure
Page directoryPage directory

 1024 4-byte page directory
entries (PDEs) that point to page
tables

 one page directory per process.
 page directory must be in

memory when its process is
running

 always pointed to by PDBR

Page tables:Page tables:
 1024 4-byte page table entries

(PTEs) that point to pages.
 page tables can be paged in and

out.

page
directory

...

Up to
1024
page

tables

1024
PTEs

1024
PTEs

1024
PTEs

...
1024
PDEs

– 21 – 15-213, F’02

ia32 Page Table Structure
(continued)

Page directoryPage directory
 A page directory defines the

virtual memory mapping for a
process

 Not all PDEs point to a valid PT
 That is, a process does not

necessarily use its entire 4GB
memory space

 The valid PDEs may be sparse
in the PD

Page tables:Page tables:
 Valid PTEs may be sparse in the

PT also
 Some pages may be valid but

not present

page
directory

...

Up to
1024
page

tables

1024
PTEs

1024
PTEs

1024
PTEs

...
1024
PDEs

– 22 – 15-213, F’02

Exercise
Suppose we had a paging scheme on a computer with 8Suppose we had a paging scheme on a computer with 8

bit addressing, a page size of 16 bytes, and 8-bitbit addressing, a page size of 16 bytes, and 8-bit
page table entries.page table entries.
 How big a memory space can be expressed with 8 bits?
 How many bits is a VPO?
 How many bits is a VPN?
 How many pages does it take to cover a memory space?
 How many page tables do you need?
 How many entries are there in a page directory?

– 23 – 15-213, F’02

P6 Page Directory Entry (PDE)

Page table physical base addr Avail G PS A CD WT U/S R/W P=1

Page table physical base address: 20 most significant bits of physical
page table address (forces page tables to be 4KB aligned)

Avail: These bits available for system programmers
G: global page (don’t evict from TLB on task switch)
PS: page size 4K (0) or 4M (1)
A: accessed (set by MMU on reads and writes, cleared by software)
CD: cache disabled (1) or enabled (0)
WT: write-through or write-back cache policy for this page table
U/S: user or supervisor mode access
R/W: read-only or read-write access
P: page table is present in memory (1) or not (0)

31 12 11 9 8 7 6 5 4 3 2 1 0

Available for OS (page table location in secondary storage) P=0
31 01

– 24 – 15-213, F’02

P6 Page Table Entry (PTE)

Page physical base address Avail G 0 D A CD WT U/S R/W P=1

Page base address: 20 most significant bits of physical page
address (forces pages to be 4 KB aligned)

Avail: available for system programmers
G: global page (don’t evict from TLB on task switch)
D: dirty (set by MMU on writes)
A: accessed (set by MMU on reads and writes)
CD: cache disabled or enabled
WT: write-through or write-back cache policy for this page
U/S: user/supervisor
R/W: read/write
P: page is present in physical memory (1) or not (0)

31 12 11 9 8 7 6 5 4 3 2 1 0

Available for OS (page location in secondary storage) P=0
31 01

– 25 – 15-213, F’02

Representation of Virtual Address
Space

Simplified ExampleSimplified Example
 16 page virtual address space

FlagsFlags
 P: Is entry in physical memory?
 M: Has this part of VA space

been mapped?

Page Directory

PT 3

P=1, M=1
P=1, M=1
P=0, M=0
P=0, M=1

••••

P=1, M=1
P=0, M=0
P=1, M=1
P=0, M=1

••••
P=1, M=1
P=0, M=0
P=1, M=1
P=0, M=1

••••
P=0, M=1
P=0, M=1
P=0, M=0
P=0, M=0

••••

PT 2

PT 0

Page 0

Page 1

Page 2

Page 3

Page 4

Page 5

Page 6

Page 7

Page 8

Page 9

Page 10

Page 11

Page 12

Page 13

Page 14

Page 15

Mem Addr

Disk Addr

In Mem

On Disk

Unmapped

– 26 – 15-213, F’02

Questions
If for every memory reference, we had to do a two-levelIf for every memory reference, we had to do a two-level

table lookup, then every memory reference wouldtable lookup, then every memory reference would
actually involve three memory referencesactually involve three memory references
 Page directory, page table, and memory containing data

Would this be good for performance?Would this be good for performance?
How can it be optimized?How can it be optimized?

– 27 – 15-213, F’02

Translation Lookaside Buffer
CPU

VPN VPO
20 12

TLBT TLBI
416

virtual address (VA)

...
TLB (16 sets,
4 entries/set)VPN1 VPN2

1010

PDE PTE

PDBR

PPN PPO
20 12

Page tables

TLB
miss

TLB
hit

physical
address (PA)

result
32

...

CT CO
20 5

CI
7

L2 andDRAM

L1 (128 sets, 4 lines/set)

L1
hit

L1
miss

– 28 – 15-213, F’02

What is the TLB
The TLB is an on-chip cache of page mappingsThe TLB is an on-chip cache of page mappings
The TLB converts a virtual page address to a physicalThe TLB converts a virtual page address to a physical

page addresspage address
On a TLB hit, the TLB delivers a physical page addressOn a TLB hit, the TLB delivers a physical page address

 Bypasses the page tables entirely

Even on a TLB miss, the page table entries may be inEven on a TLB miss, the page table entries may be in
the memory cache.the memory cache.

– 29 – 15-213, F’02

Review of Abbreviations
Symbols:Symbols:

 Components of the virtual address (VA)
 TLBI: TLB index
 TLBT: TLB tag
 VPO: virtual page offset
 VPN: virtual page number

 Components of the physical address (PA)
 PPO: physical page offset (same as VPO)
 PPN: physical page number
 CO: byte offset within cache line
 CI: cache index
 CT: cache tag

– 30 – 15-213, F’02

P6 TLB
TLB entry (not all documented, so this is speculative):TLB entry (not all documented, so this is speculative):

 V: indicates a valid (1) or invalid (0) TLB entry
 PD: is this entry a PDE (1) or a PTE (0)?
 tag: disambiguates entries cached in the same set
 PDE/PTE: page directory or page table entry

 Structure of the data TLB:Structure of the data TLB:
 16 sets, 4 entries/set

PDE/PTE Tag PD V
1 11632

entry entry entry entry
entry entry entry entry
entry entry entry entry

entry entry entry entry
...

set 0
set 1
set 2

set 15

– 31 – 15-213, F’02

Translating with the P6 TLB
1. Partition VPN into1. Partition VPN into

TLBT and TLBI.TLBT and TLBI.
2. Is the PTE for VPN2. Is the PTE for VPN

cached in set TLBI?cached in set TLBI?
 3. Yes: then

build physical
address.

4. 4. NoNo: then read PTE (and: then read PTE (and
PDE if not cached)PDE if not cached)
from memory andfrom memory and
build physicalbuild physical
address.address.

CPU

VPN VPO
20 12

TLBT TLBI
416

virtual address

PDE PTE
...

TLB
miss

TL
B
hit

page table translation

PPN PPO
20 12

physical
address

1 2

3

4

– 32 – 15-213, F’02

The operating system kernel manages page tables inThe operating system kernel manages page tables in
memory.memory.

When the kernel modifies a page table entry, what hasWhen the kernel modifies a page table entry, what has
to happen with the TLB?to happen with the TLB?

– 33 – 15-213, F’02

Exercise
With 32 bit addressing and a 4K page size, why did theyWith 32 bit addressing and a 4K page size, why did they

decide to use 2-level page translation?decide to use 2-level page translation?
What size page table would you need with single levelWhat size page table would you need with single level

page translation?page translation?

– 34 – 15-213, F’02

Exercise
The Pentium processor family has another pagingThe Pentium processor family has another paging

mode, with 4 megabyte pages.mode, with 4 megabyte pages.
How many pages are there in a 4G memory space?How many pages are there in a 4G memory space?
How many bits are there in a virtual page offset?How many bits are there in a virtual page offset?
How many bits are there in the page number?How many bits are there in the page number?

– 35 – 15-213, F’02

Exercise
With 4 meg. pages, what kind of scheme would work forWith 4 meg. pages, what kind of scheme would work for

address translation?address translation?

A disadvantage: Internal fragmentation if you donA disadvantage: Internal fragmentation if you don’’t uset use
the whole 4M page.the whole 4M page.

WhatWhat’’s the advantage?s the advantage?

