
– 1 – 15-213, F’02

CS 201

Linking
Gerson Robboy

Portland State University

– 2 – 15-213, F’02

A Simplistic Program Translation
Scheme

Problems:
• Efficiency: small change requires complete recompilation
• Modularity: hard to share common functions (e.g. printf)

Solution:
• LInker

Translator

m.c

p

ASCII source file

Binary executable object file
(memory image on disk)

– 3 – 15-213, F’02

A Better Scheme Using a Linker

Linker (ld)

Translators

m.c

m.o

Translators

a.c

a.o

p

Separately compiled
relocatable object files

Executable object file

– 4 – 15-213, F’02

Translating the Example Program
Compiler driverCompiler driver coordinates all steps in the translation coordinates all steps in the translation

and linking process.and linking process.
 Included with each compilation system (cc or gcc)
 Invokes preprocessor (cpp), compiler (cc1), assembler (as),

and linker (ld).
 Passes command line arguments to appropriate phases

Example: create executable Example: create executable pp from from m.cm.c and and a.ca.c::
bass> gcc -O2 -v -o p m.c a.c
cpp [args] m.c /tmp/cca07630.i
cc1 /tmp/cca07630.i m.c -O2 [args] -o /tmp/cca07630.s
as [args] -o /tmp/cca076301.o /tmp/cca07630.s
<similar process for a.c>
ld -o p [system obj files] /tmp/cca076301.o /tmp/cca076302.o
bass>

– 5 – 15-213, F’02

A picture of the tool set

Linker (ld)

C compiler

m.c

m.
s

C compiler

a.c

a.o

p

assembler

m.
o

Libraries
libc.a

This is the executable program

assembler

a.
s

– 6 – 15-213, F’02

What Does a Linker Do?
Merges object filesMerges object files

 Merges multiple relocatable (.o) object files into a single
executable program.

Resolves external referencesResolves external references
 External reference: reference to a symbol defined in another

object file.

Relocates symbolsRelocates symbols
 Relocates symbols from their relative locations in the .o

files to new absolute positions in the executable.
 Updates all references to these symbols to reflect their new

positions.
 References in both code and data

» code: a(); /* reference to symbol a */
» data: int *xp=&x; /* reference to symbol x */

– 7 – 15-213, F’02

Why Linkers?
ModularityModularity

 Program can be written as a collection of smaller source
files, rather than one monolithic mass.

 Can build libraries of common functions (more on this later)
 e.g., Math library, standard C library

EfficiencyEfficiency
 Time:

 Change one source file, compile, and then relink.
 No need to recompile other source files.

 Space:
 Libraries of common functions can be aggregated into a single

file...
 Yet executable files and running memory images contain only

code for the functions they actually use.

– 8 – 15-213, F’02

Questions for you
When a linker combines relocatable object files into anWhen a linker combines relocatable object files into an

executable file, why does the linker have to modifyexecutable file, why does the linker have to modify
instructions in the actual code?instructions in the actual code?

How does the linker know what values to put into theHow does the linker know what values to put into the
code?code?

How does the linker know exactly where to insert thoseHow does the linker know exactly where to insert those
values?values?

– 9 – 15-213, F’02

Executable and Linkable Format
(ELF)

Standard binary format for object filesStandard binary format for object files
Derives from AT&T System V UnixDerives from AT&T System V Unix

 Later adopted by BSD Unix variants and Linux

One unified format forOne unified format for
 Relocatable object files (.o),
 Executable object files
 Shared object files (.so)

Generic name: ELF binariesGeneric name: ELF binaries
Better support for shared libraries than old Better support for shared libraries than old a.outa.out formats. formats.
Also better, more complete information for debuggers.Also better, more complete information for debuggers.

– 10 – 15-213, F’02

ELF Object File Format
Elf headerElf header

 Magic number, type (.o, exec, .so),
machine, byte ordering, etc.

Program header tableProgram header table
 Page size, virtual addresses of memory

segments (sections), segment sizes.
.text.text section section

 Code
.data.data section section

 Initialized (static) data
..bssbss sectionsection

 Uninitialized (static) data
 “Block Started by Symbol”
 Has section header but occupies no

space in the disk file

ELF header

Program header table
(required for executables)

.text section

.data section

.bss section

.symtab

.rel.txt

.rel.data

.debug

Section header table
(required for relocatables)

0

– 11 – 15-213, F’02

ELF Object File Format (cont)
..symtabsymtab sectionsection

 Symbol table
 Procedure and static variable names
 Section names and locations

..relrel.text.text section section
 Relocation info for .text section
 Addresses of instructions that will need to

be modified in the executable
 Instructions for modifying.

..relrel.data.data section section
 Relocation info for .data section
 Addresses of pointer data that will need to

be modified in the merged executable
.debug.debug section section

 Info for symbolic debugging (gcc -g)

ELF header

Program header table
(required for executables)

.text section

.data section

.bss section

.symtab

.rel.text

.rel.data

.debug

Section header table
(required for relocatables)

0

– 12 – 15-213, F’02

Example C Program

int e=7;

int main() {
 int r = a();
 exit(0);
}

m.c a.c
extern int e;

int *ep=&e;
int x=15;
int y;

int a() {
 return *ep+x+y;
}

– 13 – 15-213, F’02

Merging Relocatable Object Files
into an Executable Object File

main()
m.o

int *ep = &e

a()

a.o

int e = 7

headers

main()

a()

0system code

int *ep = &e

int e = 7

system data

more system code

int x = 15
int y

system data

int x = 15

Relocatable Object Files Executable Object File

.text

.text

.data

.text

.data

.text

.data

.bss .symtab
.debug

.data

uninitialized data .bss

system code

– 14 – 15-213, F’02

Relocating Symbols and Resolving
External References

 Symbols are lexical entities that name functions and variables.
 Each symbol has a value (typically a memory address).
 Code consists of symbol definitions and references.
 References can be either local or external.

int e=7;

int main() {
 int r = a();
 exit(0);
}

m.c a.c
extern int e;

int *ep=&e;
int x=15;
int y;

int a() {
 return *ep+x+y;
}

Def of local
symbol e

Ref to external
symbol exit
(defined in
libc.so)

Ref to
external
symbol e

Def of
local
symbol
ep

Defs of
local
symbols
x and y

Refs of local
symbols ep,x,y

Def of
local
symbol a

Ref to external
symbol a

– 15 – 15-213, F’02

Questions for you
In the function main on the previous slide, why is thereIn the function main on the previous slide, why is there

no arrow pointing to the variable no arrow pointing to the variable r r ??

Does Does rr have to be relocated when the program is have to be relocated when the program is
linked?linked?

What information about What information about rr has to be in the symbol table? has to be in the symbol table?

What does the debugger need to know about What does the debugger need to know about r r ??

– 16 – 15-213, F’02

External functions
In main, notice that the names In main, notice that the names aa and and exitexit are external are external

symbols.symbols.
The compiler knows they are functions, and the linkerThe compiler knows they are functions, and the linker

will resolve the references.will resolve the references.
Exit is just another function callExit is just another function call

 The compiler doesn’t know anything about Unix system calls
 The compiler knows about names and data types

– 17 – 15-213, F’02

m.o Relocation Info
Disassembly of section .text:

00000000 <main>: 00000000 <main>:
 0: 55 pushl %ebp
 1: 89 e5 movl %esp,%ebp
 3: e8 fc ff ff ff call 4 <main+0x4>
 4: R_386_PC32 a
 8: 6a 00 pushl $0x0
 a: e8 fc ff ff ff call b <main+0xb>
 b: R_386_PC32 exit
 f: 90 nop

Disassembly of section .data:

00000000 <e>:
 0: 07 00 00 00

source: objdump

int e=7;

int main() {
 int r = a();
 exit(0);
}

m.c

– 18 – 15-213, F’02

a.o Relocation Info (.text)
a.c
extern int e;

int *ep=&e;
int x=15;
int y;

int a() {
 return *ep+x+y;
}

Disassembly of section .text:

00000000 <a>:
 0: 55 pushl %ebp
 1: 8b 15 00 00 00 movl 0x0,%edx
 6: 00
 3: R_386_32 ep
 7: a1 00 00 00 00 movl 0x0,%eax
 8: R_386_32 x
 c: 89 e5 movl %esp,%ebp
 e: 03 02 addl (%edx),%eax
 10: 89 ec movl %ebp,%esp
 12: 03 05 00 00 00 addl 0x0,%eax
 17: 00
 14: R_386_32 y
 18: 5d popl %ebp
 19: c3 ret

– 19 – 15-213, F’02

Question
On the previous slide, the variables ep, x, and y areOn the previous slide, the variables ep, x, and y are

local in the same source file.local in the same source file.
So why canSo why can’’t the compiler just generate completedt the compiler just generate completed

code? Why is relocation information necessary?code? Why is relocation information necessary?

– 20 – 15-213, F’02

a.o Relocation Info (.data)
a.c
extern int e;

int *ep=&e;
int x=15;
int y;

int a() {
 return *ep+x+y;
}

Disassembly of section .data:

00000000 <ep>:
 0: 00 00 00 00

0: R_386_32 e
 00000004 <x>:
 4: 0f 00 00 00

– 21 – 15-213, F’02

Executable After Relocation and
External Reference Resolution(.data)

Disassembly of section .data:

0804a018 <e>:
 804a018: 07 00 00 00

0804a01c <ep>:
 804a01c: 18 a0 04 08

0804a020 <x>:
 804a020: 0f 00 00 00

int e=7;

int main() {
 int r = a();
 exit(0);
}

m.c

a.c
extern int e;

int *ep=&e;
int x=15;
int y;

int a() {
 return *ep+x+y;
}

– 22 – 15-213, F’02

Exercise
void f(void);
int x = 15213;
int y = 15212;

int main() {
 f();
 printf(“x = %d,y = %d\n”, x, y);
 return 0;
}

m.
c

a.c

double x;

void f() {
 x = 0.0;
}

Will the C compiler accept this code without an error?
Will the C compiler give a warning?
Will the C compiler overload the two symbols “x” because they
 have different data types?
Will the linker link these modules, or abort with an error?
What will this program print when it runs?

– 23 – 15-213, F’02

In the previous slide, what can you change to make theIn the previous slide, what can you change to make the
program work program work ““correctly;correctly;”” i. e., print the initialized i. e., print the initialized
values of x and y?values of x and y?

– 24 – 15-213, F’02

Exercise
int f()
{
 static int x = 0;
 return x;
}
int g()
{
 static int x = 1;
 return x;
}

m.
c

Will the C compiler accept this code without an error?
Are the two variables x temporary?
What is their scope?
Is there a conflict between the two variables x?
How does the compiler handle these two variables?
How does the linker handle them?

– 25 – 15-213, F’02

Relocation
In a In a relocatable relocatable file, each section (text, data, file, each section (text, data, bssbss) starts) starts

at address zero. Offsets in the section are relative toat address zero. Offsets in the section are relative to
zero.zero.

In an executable file, each section is bound to theIn an executable file, each section is bound to the
absolute address at which it will be loaded inabsolute address at which it will be loaded in
memory.memory.

How does the linker know what address to bind eachHow does the linker know what address to bind each
section to?section to?
 That is, how does the linker know where the program will be

loaded in memory?

– 26 – 15-213, F’02

Where are programs loaded in memory?

To start with, imagine a primitive operating system.To start with, imagine a primitive operating system.
 Single tasking.Single tasking.
 Physical memory addresses go from zero to N.Physical memory addresses go from zero to N.
 The problem of loading is simple: load the programThe problem of loading is simple: load the program

starting at address zerostarting at address zero
 Use as much memory as it takes.

 The linker binds the program to absolute addressesThe linker binds the program to absolute addresses
 Code starts at zero
 Data concatenated after that
 etc.

– 27 – 15-213, F’02

Where are programs loaded, cont’d

Next imagine a multi-tasking operating system on aNext imagine a multi-tasking operating system on a
primitive computer.primitive computer.

 A physical memory space, from zero to N.A physical memory space, from zero to N.
 Memory must be allocated at load time.Memory must be allocated at load time.
 The linker does not know where the program will beThe linker does not know where the program will be

loaded.loaded.
 The linker binds together all the modules, but keeps them

relocatable.

How does the operating system load this program?How does the operating system load this program?
 Not a pretty solution.

– 28 – 15-213, F’02

Where are programs loaded, cont’d

Next, imagine a multi-tasking operating system on aNext, imagine a multi-tasking operating system on a
modern computer, with hardware-assisted dynamicmodern computer, with hardware-assisted dynamic
relocation.relocation.

 The O. S. creates a virtual memory space for eachThe O. S. creates a virtual memory space for each
useruser’’s program.s program.
 As though there is a single user with the whole memory all

to itself.

 Now weNow we’’re back to the simple modelre back to the simple model
 The linker statically binds the program to virtual addresses
 At load time, the operating system allocates memory,

creates a virtual address space, and loads the code and
data.

 More about how this is done in a few weeks.

– 29 – 15-213, F’02

The linker binds programs to absolute addresses

Nothing is left Nothing is left relocatablerelocatable, no relocation at load time., no relocation at load time.

kernel virtual memory
(code, data, heap, stack)

memory mapped region for
shared libraries

run-time heap
(managed by malloc)

user stack
(created at runtime)

unused0

%esp (stack pointer)

memory
invisible to
user code

brk

0xc0000000

0x08048000

0x40000000

read/write segment
(.data, .bss)

read-only segment
(.init, .text, .rodata)

loaded from the
executable file

0xffffffff

– 30 – 15-213, F’02

More details on program loading
How does the O. S. know where to load the programHow does the O. S. know where to load the program

and how much memory to allocate?and how much memory to allocate?
 The linker and the O. S. loader must agree on anThe linker and the O. S. loader must agree on an

object module format.object module format.
 The linker writes an executable file
 The O. S. loader reads that file to load the program
 The O. S. allocates the appropriate memory, and reads the

program code and data into memory.

 More on this in CS 333.More on this in CS 333.

– 31 – 15-213, F’02

Loading Executable Binaries

ELF header

Program header table
(required for executables)

.text section

.data section

.bss section

.symtab

.rel.text

.rel.data

.debug

Section header table
(required for relocatables)

0

.text segment
(r/o)

.data segment
(initialized r/w)

.bss segment
(uninitialized r/w)

Executable object file for
example program p

Process image

0x08048494

init and shared lib
segments

0x080483e0

Virtual addr

0x0804a010

0x0804a3b0

– 32 – 15-213, F’02

Static Libraries (archives)

Translator

p1.c

p1.o

Translator

p2.c

p2.o libc.a
static library (archive) of
relocatable object files
concatenated into one file.

executable object file (only contains code
and data for libc functions that are called
from p1.c and p2.c)

Linker (ld)

p

– 33 – 15-213, F’02

Creating Static Libraries

Translator

atoi.c

atoi.o

Translator

printf.c

printf.o

libc.a

Archiver (ar)

... Translator

random.c

random.o

ar rs libc.a \
 atoi.o printf.o … random.o

C standard library

– 34 – 15-213, F’02

Why do we need static libraries?
Why not just use ld to link Why not just use ld to link atoiatoi.o, .o, printfprintf.o, random.o, .o, random.o, ……

into a big into a big relocatable relocatable file, file, libclibc.o .o instead of an archive,instead of an archive,
libclibc.a ?.a ?

– 35 – 15-213, F’02

Commonly Used Libraries
libclibc.a.a (the C standard library) (the C standard library)

 8 MB archive of 900 object files.
 I/O, memory allocation, signal handling, string handling, data and

time, random numbers, integer math
libmlibm.a.a (the C math library) (the C math library)

 1 MB archive of 226 object files.
 floating point math (sin, cos, tan, log, exp, sqrt, …)

% ar -t /usr/lib/libc.a | sort
…
fork.o
…
fprintf.o
fpu_control.o
fputc.o
freopen.o
fscanf.o
fseek.o
fstab.o
…

% ar -t /usr/lib/libm.a | sort
…
e_acos.o
e_acosf.o
e_acosh.o
e_acoshf.o
e_acoshl.o
e_acosl.o
e_asin.o
e_asinf.o
e_asinl.o
…

– 36 – 15-213, F’02

Using Static Libraries
The linker tries to resolve all references by scanningThe linker tries to resolve all references by scanning

the files on the command line, in orderthe files on the command line, in order
 As each new .o or .a file obj is encountered, try to resolve

each unresolved reference in the list against the symbols in
obj.

Command line order matters!Command line order matters!
 In your Makefile, where should libraries go on the command

line?

bass> gcc -L. libtest.o -lmine
bass> gcc -L. -lmine libtest.o
libtest.o: In function `main':
libtest.o(.text+0x4): undefined reference to `libfun'

– 37 – 15-213, F’02

Exercise
Suppose you write a program that uses the pow function from libm.a, which takes

two double arguments:

 double double powpow(double x, double y);(double x, double y);

Suppose you pass it an integer for y, instead of a double,Suppose you pass it an integer for y, instead of a double,
and you find that it works correctly.and you find that it works correctly.

 1. How can you tell if pow implemented as a macro or a library function
call? List three different ways you can find out.

2. When you assign an integer value to a float or double variable, the
compiler does the conversion for you. Does the compiler do that when
you pass an integer as an argument to a function that takes a double?
How can you tell?

3. If pow or some other function is implemented as a macro that takes
a double as an argument, and the programmer passes it an int instead of
a double, then how can the macro still work correctly?

– 38 – 15-213, F’02

Shared Libraries
Invented by AT&T in 1986 for Unix System V on PCsInvented by AT&T in 1986 for Unix System V on PCs

 In 1986 the Intel 386 came out
 The PC was at last capable of meaningfully running Unix

Microsoft later copied the idea: DLLsMicrosoft later copied the idea: DLLs
What problem was AT&T trying to solve?What problem was AT&T trying to solve?

 PC distribution of Unix was on floppy disks
 Lots and lots of floppy disks

 Reduce the aggregate size of the distribution
 Also conserve memory at run time

– 39 – 15-213, F’02

Shared Libraries
What problems do shared libraries solve today?What problems do shared libraries solve today?

 Avoid duplicating code in the virtual memory space of many
processes.

 Minor bug fixes of system libraries don’t require a relink of
all the user space programs

– 40 – 15-213, F’02

Dynamically Linked Shared Libraries

libc.so functions called by m.c
and a.c are loaded, linked, and
(potentially) shared among
processes.

Shared library of dynamically
relocatable object files

Translators
(cc1, as)

m.c

m.o

Translators
(cc1,as)

a.c

a.o

libc.so

Linker (ld)

p

Loader/Dynamic Linker
(ld-linux.so)

Fully linked executable
p’ (in memory)

Partially linked executable
p
(on disk)

P’

– 41 – 15-213, F’02

The Complete Picture

Translator

m.c

m.o

Translator

a.c

a.o

libc.so

Static Linker (ld)

p

Loader/Dynamic Linker
(ld-linux.so)

libwhatever.a

p’

libm.so

– 42 – 15-213, F’02

Problems to solve with shared libraries

Where do you put them in memory?Where do you put them in memory?
 Solution: Reserve a region of virtual memory for shared

libraries

WhatWhat’’s the problem if each shared library function hass the problem if each shared library function has
its own reserved fixed address?its own reserved fixed address?

WhatWhat’’s the problem if shared libraries can be relocateds the problem if shared libraries can be relocated
when loaded?when loaded?

– 43 – 15-213, F’02

Problems with dynamic relocation
Within your own program:Within your own program:

 Where are the shared library functions?
 How do you call them?

Within the shared library code itself:Within the shared library code itself:
 How to call other functions within the shared library?
 How to call functions in other shared libraries?
 How to access global variables if they are relocated?

 External global variables
 Defined in the same file, but relocated

– 44 – 15-213, F’02

Version Control
The biggest problem with shared libraries is versionThe biggest problem with shared libraries is version

control.control.
Is a newly installed program compatible with the sharedIs a newly installed program compatible with the shared

libraries that came with the O. S.?libraries that came with the O. S.?
A hassle on A hassle on linuxlinux::

 Copy a binary program from another linux system
 It won’t run because of different version of shared libraries

Are shared libraries worth the hassle?Are shared libraries worth the hassle?
Do they really solve a problem today?Do they really solve a problem today?

– 45 – 15-213, F’02

A note on installable device drivers
By-product of shared library technologyBy-product of shared library technology
These are cool.These are cool.

 Buy commodity components, retail
 Install a device vendor’s driver from a CD or Internet
 No need to compile or link the kernel
 Anyone can do it at home

– 46 – 15-213, F’02

PIC
problem with shared librariesproblem with shared libraries
could assign a chunk of address space to each possible shared libcould assign a chunk of address space to each possible shared lib

but this is pain in posterioribut this is pain in posteriori

therefore use therefore use ““Position Independent CodePosition Independent Code””
code more or less references addresses via table lookup pluscode more or less references addresses via table lookup plus

offsetoffset
more expensive - but solves shared lib problem on UNIXmore expensive - but solves shared lib problem on UNIX
maybe 5 instructions per single instruction for non-sharedmaybe 5 instructions per single instruction for non-shared

approachapproach

– 47 – 15-213, F’02

PIC workings with gcc
•• compile and link to create shared lib (.so)compile and link to create shared lib (.so)
•• gcc gcc -shared -shared -fPIC -o libmumble-fPIC -o libmumble.so a.c b.c .. z.c.so a.c b.c .. z.c
•• link to previous program that wants to use sharedlink to previous program that wants to use shared

liblib
•• gcc -o gcc -o program program mainprogmainprog.c ..c ./libmumble/libmumble.so.so
•• NOTE: table lookup info but no code added toNOTE: table lookup info but no code added to

programprogram
•• load and run (load and run (execvpexecvp), however first dynamic linking), however first dynamic linking

is done so that program can find is done so that program can find libmumblelibmumble.so.so

– 48 – 15-213, F’02

list of tools mentioned in B/O
1.1. ar ar -- library archive tool (library archive tool (libclibc.a <- *.o).a <- *.o)
2.2. strings - findstrings - find C strings in a binary file.C strings in a binary file.
3.3. strip - throw out the symbol tablestrip - throw out the symbol table
4.4. nm - list the symbol table (enemy of strip)nm - list the symbol table (enemy of strip)
5.5. readelf readelf - display structure of object file, including elf- display structure of object file, including elf

headerheader
6.6. objdump objdump - dump binary file in various ways- dump binary file in various ways
7.7. size - simple info about size - simple info about text/bss text/bss etc for size of binaryetc for size of binary

filefile
8.8. hexdump/od hexdump/od - hex/octal dumper- hex/octal dumper
9.9. dondon’’t leave out ld - linker, and t leave out ld - linker, and ldd ldd - dynamic loader- dynamic loader

