

Lecture Topics

- Lecture Topics
 - Positive and Negative Photoresists
 - Spin Coating Thickness
 - Spin Coat Planarization
 - Mask Registration
 - Effect of Dirt on Yield
 - Photoresist Exposure Contrast
 - Photoresist Development Rate

- Lecture Objectives
 - Can design process for pos or neg PR
 - Can calculate spin thickness
 - Can estimate planarization, defect yield
 - Can explain exposure contrast
 - Can calculate development rates

PR Exposure Contrast #3

Need wave modulation of image $M_i = I_m/I_0$ For lines to just print , $I_i = I_0 - I_m$, $I_f = I_0 + I_m$ ie. critical modulation for acceptable print $M_{ic} = (I_f - I_i) / (I_f + I_i)$

 $= (10^{1/\gamma} - 1) / (10^{1/\gamma} + 1)$

For mask source modulation $M_s = 1$, M_{ic} represents optics quality.

If γ increases, can print with lower M_i

PR Exposure Physics #2

Total number scissions N^{*} from dose D: N^{*} = K D w where w polymer mass, K a molecular parameter Av molecular weight $M_n^o = w N_a / N_0$ N_0 number molecules in mass w N_a Avogadro's number After exposure $M_n \rightarrow w N_a / (N_0 + N^*)$ $\therefore M_n^{-1} = M_n^{o-1} + (K/N_a)D$

Want high k for feature definition

PR Development #3

 $\begin{array}{l} \mbox{Volume fractions polymer \& solvent} \\ C_p + C_s = 1 \\ \partial c \slash d c \slas$

PR Development #4 Assume linear concentration approximation in gel

PR Development #5

Solution is $\begin{aligned} -A\delta - AB \ln (1 - \delta/B) &= \tau \\ \text{where } \delta &= (s - g)/s_0 \\ A &= D_s/s_0 k_d C_{pd}^* \\ B &= D_s (C_{pg}^* - C_{pd}^*)(2 - C_{pg}^*) / s_0 k_d C_{pd}^* (1 - C_{pg}^*) \\ \tau &= D_s t/s_0^2 \end{aligned}$ For small t, $\delta = (2B \tau/A)^{1/2}$

