

Introduction

- Process of image transfer to wafer

- Origin pattern drawn N x

- Images control diffusion, oxidation, & metallization sequences

- expose parts, mask others

-"Masking levels" refer to each mask used

-Lithographic Sequence:

1. Draw mask 100-2000x final size

2. Photographically reduce to 10x final size (glass)

3. Step & repeat -> [1 x final size] x [matrix of images] (glass)

4. Spin coat substrate with photoresist

- thickness α (spin rate) $^{\text{-1/2}}$

5. Expose PR through mask & "develop" to dissolve unwanted PR, etc.

Year of Production	1998	2000	2002	2004	2007	2010	2013	2016	2018
Technolo gy Node (half pitch)	250 nm	180 nm	130 nm	90 nm	65 nm	45 nm	32 nm	22 nm	18 nm
MPU Printed Gate Length		100 nm	70 nm	53 nm	35 nm	25 nm	18 nm	13 nm	10 nm
DRAM Bits/ Chip (Sampling)	256M	512M	1G	4G	16G	32G	64G	128G	128G
MPU Transistors/C hip (x106)				550	1100	2200	4400	8800	14,000
Gate CD Control 30 (nm)				3.3	2.2	1.6	1.16	0.8	0.6
Overlay (nm)				32	23	18	12.8	8.8	7.2
Field Size (mm)	22x32	22x32	22x32	22x32	22x32	22x32	22x32	22x32	22x32
Exposure Tec hnology	248 nm	248 nm	248 nm + RET	193nm + RET	193nm + RET	193nm + RET + H ₂ O	193nm + RET + H ₂ O 157nm??	???	???
ta Volume/Mas k lev el (GB)				216	729	1644	3700	8326	12490

$$\therefore R = \frac{0.61 \lambda}{NA} = k_1 \frac{\lambda}{NA}$$
(4)
• k₁ is an experimental parameter which depends on the lithography system
and resist properties (~ 0.4 - 0.8).
• Obviously resolution can be increased by:
• decreasing k₁
• decreasing λ
• increasing NA (bigger lenses)
• However, higher NA lenses also decrease the depth of focus. (See next slide
for derivation.)
 $DOF = \pm \frac{\lambda}{2(NA)^2} = \pm k_2 \frac{\lambda}{(NA)^2}$ (5)
• k₂ is usually experimentally determined.
• Thus a 248nm (KrF) exposure system with a NA = 0.6 would have a resolution
of ~ 0.3 µm (k₁ = 0.75) and a DOF of ~ ± 0.35 µm (k₂ = 0.5).

55

4/23/2012

ECE416/516 IC Technologies Spring 2011

Photoresist on Wafer Objective or Projection Condenser Lens Mask Lens Light Consider a generic projection system: Aperture x'y' Plane x₁y₁ Plane $t(x_1, y_1) = \begin{cases} 1 \text{ in clear areas} \\ 0 \text{ in opaque areas} \end{cases}$ The mask is considered to have (15) a digital transmission function: After the light is diffracted, it is $\mathcal{E}(\mathbf{x}',\mathbf{y}') = \int_{-\infty-\infty}^{+\infty+\infty} t(\mathbf{x}_1,\mathbf{y}_1) e^{-2\pi \mathbf{j}(\mathbf{f}_{\mathbf{x}}\mathbf{x}+\mathbf{f}_{\mathbf{y}}\mathbf{y})} d\mathbf{x} d\mathbf{y}$ (16) described by the Fraunhofer diffraction integral: where f_x and f_y are the spatial $f_x = \frac{x'}{z\lambda}$ and $f_y = \frac{y'}{z\lambda}$ frequencies of the diffraction pattern, defined as ECE416/516 IC Technologies Spring 2011 4/23/2012 56

Reflection & Standing Waves $E_1 = E_0 \cos(\omega t - \beta z)$ Notes: (1) Poor development at surface $E_R = RE_o \cos(\omega t + \beta z)$ (2) PR on oxide $\beta = 2 \pi (n - i k) / \lambda$ --> optical properties similar, R = reflection coefficient = r² so SW continuous across interface; adjust thickness of oxide Z_o to get anti- $= [(n_1 - n_2)/(n_1 + n_2)]^2$ node at PR/oxide interface. n₂ = Si complex refractive index n₁ = PR complex refractive index $Z_{o} = (2m + 1) \lambda / 4n$ $k \approx o$ for PR or oxide, $\beta \approx 2\pi n/\lambda$ (3)Eliminate SW formation: (a) thin absorbing layer $E_{I} + E_{R} = E_{o}[\cos(\omega t - \beta z) + R\cos(\omega t + \beta z)]$ between Si & PR -->Standing Wave (b) dye in PR for light scatter $E_s = E_{so} \sin \omega t \sin((2\pi nZ)/\lambda + \theta)$ (4) Plasma etch removes PR Maxima/Minima separations λ /2n residue Minima when $(2 \pi nZ/\lambda) + \theta = m \pi$ $m = 0, 1, 2, \ldots$ For r = -1 (Si, GaAs, metals), $\theta = 0$. minima at $Z=m\lambda/2n$, m = 0, 1, 2... & exposure due to intensity I = $I_0 \sin^2 \beta Z$

Assignment #3									
Problems	6 1	7 /.							
r robierns.	6.2	7.4 7.5							
	65	7.5 7.6/7							
Mid-term course evaluation:									
Summarize what you like about the course,									
and what you don't like.									
(Suggestion: Identify 5 each.)									
Consider lectures, textbook, assignments,									
notes, videos, etc. (Weighted as 2 problems)									
4/23/2012	ECE416/516 IC Technologies Spring	2011	79						

