

Doping Methods

Boron & Phosphorus Doping

$\frac{Boron}{2B_2O_3 + 3Si <> 4B+3SiO_2 at surface}$ $\frac{Liquid:}{2(CH_3O_3)B+9O_2900^\circ C> B_2O_3 + 6CO_2 + 9H_2O}$ $4BBr_3 + 3O_2> 2B_2O_3 + 6Br_2$ $Gaseous:$ $B_2H_2 + 3O_2300^\circ C> B_2O_3 + 3H_2O$ $\frac{Phosphorus}{TMB - trimethylbromate}$ $2P_2O_5 + 5Si <> 4P+5SiO_2 at surface$ $Liquid:$ $4POCI_3 + 3O_2> 2P_2O_5 + 6CI_2$ $Gaseous:$		
$2B_{2}O_{3} + 3Si <> 4B+3SiO_{2} at surface$ Liquid: $2(CH_{3}O_{3})B+9O_{2}900^{\circ}C> B_{2}O_{3}+6CO_{2}+9H_{2}O$ $4BBr_{3}+3O_{2}> 2B_{2}O_{3}+6Br_{2}$ Gaseous: $B_{2}H_{2} + 3O_{2}300^{\circ}C> B_{2}O_{3} + 3H_{2}O$ $TMB - trimethylbromate$ $2P_{2}O_{5} + 5Si <> 4P+5SiO_{2} at surface$ Liquid: $4POCI_{3}+3O_{2}> 2P_{2}O_{5}+6CI_{2}$ Gaseous: $4POCI_{3}+3O_{2}> 2P_{2}O_{5}+6CI_{2}$ Gaseous:	Boron	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$2B_2O_3 + 3Si \le 4B+3SiO_2$ at surface	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Liquid:	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	2(CH ₃ O ₃)B+9O ₂ 900°C> B ₂ O ₃ +6CO ₂	+9H ₂ O
$\begin{array}{llllllllllllllllllllllllllllllllllll$	4BBr ₃ +3O ₂ > 2B ₂ O ₃ +6Br ₂	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Gaseous:	
	$B_2H_2 + 3O_2 - 300^{\circ}C \rightarrow B_2O_3 + 3H_2O$ TMB - trimethylbromate	$\frac{Phosphorus}{2P_2O_5 + 5Si <> 4P+5SiO_2 at surface}$ Liquid: $4POCI_3+3O_2> 2P_2O_5+6CI_2$ Gaseous:
2PH ₃ + 4O ₂ 400°C> P ₂ O ₅ + 3H ₂		2PH ₃ + 4O ₂ 400°C> P ₂ O ₅ + 3H ₂ O

Physical Mechani	sm Notes
Dissociative mechanism:	
-generally mixture of interstition	al and substitutional
Significant movement by interstitial only	,
-substitutional requires adjace	ent vacancy
Interchange diffusion	
-Direct interchange	$\bigcirc \bullet \boxtimes \bigcirc \bigcirc \bigcirc$
-Cooperative interchange:	more than 2 atoms involved
Self-diffusion:	
-Lattice atoms also diffuse	
Dislocation / Grain Boundary diffusion	:
-easier at crystal edges	
-Diffusion parallel to disloca grain boundary	tion or along
-more than 3 orders faster t	han bulk

Mixed Diffusio	on			
Impurities dissolve as both Substitution	nal & Interstitial			
- Substitutional solubility N_s				
- Interstitial solubility N _i				
- Usually N _s > N _i but υ_1 >> υ_s				
Given atom spends (at equilibrium):				
- N_i / (N_i + N_S) time in interst	itial site			
- $ m N_S$ / ($ m N_i$ + $ m N_S$) time in subst	itutional site			
Therefore:				
υ_{eff} = (υ_{s} N _{S +} υ_{i} N _i) / (N _i + N _S))			
$\approx \upsilon_1 / (1 + N_S / N_i)$				
Interaction since:				
S ↔ I	+ V			
Substitution Interstitial	Vacancy			

Dopants
•Group III / V impurities:
 Substitutional diffusers: B,AI,Ga,In,Sb,As,P
•(B also interstitial)
•Group I / VIII impurities:
 Interstitial diffusers H,Na,L,K,Ar,He
 Transition: substitutional/interstitial:
•Co,Cu,Au,Fe,Ni,Pt,Ag

Total flux
$$F = -D \frac{\partial C}{\partial x} + Cv$$
 where $v =$ velocity in electric field ε

$$\therefore \frac{\partial C}{\partial t} = -\frac{\partial F}{\partial x} = \frac{\partial}{\partial x} \left(D \frac{\partial C}{\partial x} \right) - v \frac{\partial C}{\partial x},$$
or using
 $v = \mu \varepsilon = \frac{q}{kT} D \cdot \frac{\partial \varphi}{\partial x} = \frac{q}{kT} D \cdot \frac{\partial}{\partial x} \left[-\frac{kT}{q} \ln \frac{n}{n_i} \right] = D \frac{\partial}{\partial x} \left[\ln \frac{n}{n_i} \right]$
 $F = -D \frac{\partial C}{\partial x} + DC \frac{\partial}{\partial x} \ln \frac{n}{n_i} = -DC \left[\frac{1}{C} \frac{\partial C}{\partial x} + \frac{\partial}{\partial x} \ln \frac{n}{n_i} \right] = -DC \frac{\partial}{\partial x} \left(\ln \frac{n}{n_i} C \right)$
or using
 $N_D + p \approx N_A + n$
 $gives \frac{\partial}{\partial x} \ln \frac{n}{n_i} = \frac{n_i}{n_i} \frac{1}{n_i} \frac{\partial n}{\partial x} = \frac{\partial C}{\partial x} \frac{1}{\sqrt{C^2 + 4n_i^2}}$
 $get n = C + \frac{n_i^2}{n}$, i.e. $n^2 - Cn - n_i^2 = 0$,
 $and F = J = -D \frac{\partial C}{\partial x} - DC \frac{\partial}{\partial x} \ln \frac{n}{n_i}$
 $giving n = \frac{C \pm \sqrt{C^2 + 4n_i^2}}{2}$
 $i.e. \frac{dn}{dx} = \frac{n \frac{dC}{dx}}{2n - C} = \frac{n \frac{dC}{dx}}{\sqrt{C^2 + 4n_i^2}}$
 $ECE 416 lys 6 \text{ Spring 2010}$
 $ECE 416 lys 6 \text{ Spring 2010}$
 $F = -DD \frac{\partial C}{\partial x} = -DD \frac{\partial C}{\partial x}$

Charged Defects #2

 $\begin{bmatrix} V^0 \end{bmatrix} = \begin{bmatrix} V^0 \end{bmatrix}_i \text{ not charge dependent} \\ V^0 + h^+ \Leftrightarrow V^+ \qquad (h^+ = hole) \\ \therefore k_1 = \begin{bmatrix} V^+ \end{bmatrix} / p \begin{bmatrix} V^0 \end{bmatrix} = \begin{bmatrix} V^+ \end{bmatrix} / p \begin{bmatrix} V^0 \end{bmatrix}_i \\ \& \text{ for the intrinsic case:} \\ k_1 = \begin{bmatrix} V^+ \end{bmatrix}_i / n_i \begin{bmatrix} V^0 \end{bmatrix}_i \qquad \therefore \begin{bmatrix} V^+ \end{bmatrix} / \begin{bmatrix} V^+ \end{bmatrix}_i = p / n_i$

Generalize for V-r

$$\begin{split} V^0 + re^- &\Leftrightarrow V^{-r} \\ K_r = & [V^{-r}] / n^r \left[V^0 \right] = \left[V^{-r} \right]_i / n^r_i \left[V^0 \right] \\ & [V^{-r}] / [V^{-r}]_i = (n / n_i)^r \\ & \therefore D = D_i^+ (p/n_i) + D_i^0 + D_i^- (n/n_i) + D_i^{2-} (n/n_i)^2 + ... \\ & D_{eff} = & [D_i^+ (p/n_i) + D_i^0 + D_i^- (n/n_i) + ...] h \\ & \text{where field enhancement } h = 1 + [1 + (2n_i / N)^2]^{-1/2} \end{split}$$

N type impurity diffusion: $D_i^- D_i^{2-}$, ... dominant P type impurity diffusion: D_i^+ dominant GaAs vacancies neutral: $D_i \approx h D_i^0$

For intrinsic $(n = p = n_i)$:							
$D_A^*=D_0^{}+D^-^{}+D^=$							
and $D_A^{eff} = D_A^* \left[\frac{1 + \beta \frac{n}{n_i} + \gamma \left(\frac{n}{n_i}\right)^2}{1 + \beta + \gamma} \right]$							
where $\beta = \frac{D}{D_0}$ and	$\gamma = \frac{\mathrm{D}}{\mathrm{D}_0}$					<i>(</i>)	
$\mathbf{D} = \mathbf{D}.0\exp\left(-\frac{\mathbf{D}.\mathbf{E}}{\mathbf{k}T}\right) (19)$							
					$\mathbf{D} = \mathbf{D}.0 \exp (\mathbf{D} \mathbf{D})$	$\left(-\frac{D.E}{kT}\right)$	(19)
	Si	В	In	As	D = D.0exp	$\left(-\frac{D.E}{kT}\right)$	(19)
D ⁰ .0 cm ² sec ⁻¹	Si 560	B 0.05	In 0.6	As 0.011	D = D.0exp Sb 0.214	$\frac{D}{kT}$ $\frac{P}{3.85}$	(19)
D ⁰ .0 cm ² sec ⁻¹ D ⁰ .E eV	Si 560 4.76	B 0.05 3.5	In 0.6 3.5	As 0.011 3.44	D = D.0exp Sb 0.214 3.65	$\frac{\mathbf{D} \cdot \mathbf{E}}{\mathbf{kT}}$ $\frac{\mathbf{P}}{3.85}$ 3.66	(19)
D ⁰ .0 cm ² sec ⁻¹ D ⁰ .E eV D ⁺ .0 cm ² sec ⁻¹	Si 560 4.76	B 0.05 3.5 0.95	In 0.6 3.5 0.6	As 0.011 3.44	D = D.0exp Sb 0.214 3.65	$\frac{\mathbf{P}}{\mathbf{kT}}$ $\frac{\mathbf{P}}{3.85}$ 3.66	(19)
D ⁰ .0 cm ² sec ⁻¹ D ⁰ .E eV D ⁺ .0 cm ² sec ⁻¹ D ⁺ .E eV	Si 560 4.76	B 0.05 3.5 0.95 3.5	In 0.6 3.5 0.6 3.5	As 0.011 3.44	D = D.0exp Sb 0.214 3.65	$\frac{P}{kT}$ $\frac{P}{3.85}$ 3.66	(19)
D ⁰ .0 cm ² sec ⁻¹ D ⁰ .E eV D ⁺ .0 cm ² sec ⁻¹ D ⁺ .E eV D ⁻ .0 cm ² sec ⁻¹	Si 560 4.76	B 0.05 3.5 0.95 3.5	In 0.6 3.5 0.6 3.5	As 0.011 3.44 31.0	D = D.0exp Sb 0.214 3.65 15.0	$\frac{P}{kT}$ $\frac{P}{3.85}$ 3.66 4.44	(19)
D ⁰ .0 cm ² sec ⁻¹ D ⁰ .E eV D ⁺ .0 cm ² sec ⁻¹ D ⁺ .E eV D ⁻ .0 cm ² sec ⁻¹ D ⁻ .E eV	Si 560 4.76	B 0.05 3.5 0.95 3.5	In 0.6 3.5 0.6 3.5	As 0.011 3.44 31.0 4.15	D = D.0exp Sb 0.214 3.65 15.0 4.08	$\begin{array}{c} \left(-\frac{D.E}{kT}\right) \\ \hline P \\ \hline 3.85 \\ \hline 3.66 \\ \hline \\ 4.44 \\ \hline 4.0 \end{array}$	(19)
D ⁰ .0 cm ² sec ⁻¹ D ⁰ .E eV D ⁺ .0 cm ² sec ⁻¹ D ⁺ .E eV D ⁻ .0 cm ² sec ⁻¹ D ⁻ .E eV D ⁻ .0 cm ² sec ⁻¹	Si 560 4.76	B 0.05 3.5 0.95 3.5	In 0.6 3.5 0.6 3.5	As 0.011 3.44 31.0 4.15	D = D.0exp Sb 0.214 3.65 15.0 4.08	$ \begin{array}{c} \left(-\frac{D.E}{kT}\right) \\ \hline P \\ 3.85 \\ 3.66 \\ \hline \\ 4.44 \\ 4.0 \\ 44.2 \\ \end{array} $	(19)
D ⁰ .0 cm ² sec ⁻¹ D ⁰ .E eV D ⁺ .0 cm ² sec ⁻¹ D ⁺ .E eV D ⁻ .0 cm ² sec ⁻¹ D ⁻ .E eV D ⁻ .0 cm ² sec ⁻¹ D ⁻ .E eV	Si 560 4.76	B 0.05 3.5 0.95 3.5	In 0.6 3.5 0.6 3.5	As 0.011 3.44 31.0 4.15	D = D.0exp Sb 0.214 3.65 15.0 4.08	$ \begin{array}{c} \left(-\frac{D.E}{kT}\right) \\ \hline P \\ 3.85 \\ 3.66 \\ \hline \\ 4.44 \\ 4.0 \\ 44.2 \\ 4.37 \\ \end{array} $	(19)

• If we assume "chemical equilibrium" between dopants and defects in Eqn. (23), $C_{AI} = kC_A C_I$ then from the law of mass action,	(24)
• Applying Fick's law to the <u>mobile species</u> $F_{AI} = -d_{AI} \frac{\partial C_{AI}}{\partial x}$	(25)
•Applying the chain rule from calculus, $F_{AI} = -d_{AI} \left(kC_{I} \frac{\partial C_{A}}{\partial x} + kC_{A} \frac{\partial C_{I}}{\partial x} \right)$	(26)
•Thus, gradients in defects as well as gradients in dopant concentrations can de diffusion fluxes.	rive
• The overall flux equation solved by simulators like SUPREM is	
$\mathbf{F}_{\mathrm{BI}}^{\mathrm{tot}} = \mathbf{D}_{\mathrm{BI}}^{*} \cdot \left(\frac{1+\beta \frac{\mathbf{p}}{\mathbf{n}_{\mathrm{i}}}}{1+\beta}\right) \cdot \frac{\mathbf{C}_{\mathrm{I}^{0}}}{\mathbf{C}_{\mathrm{I}^{0}}^{*}} \cdot \mathbf{C}_{\mathrm{B}^{-}} \frac{\partial}{\partial \mathbf{x}} \ln \left(\mathbf{C}_{\mathrm{B}^{-}} \frac{\mathbf{C}_{\mathrm{I}^{0}}}{\mathbf{C}_{\mathrm{I}^{0}}^{*}} \frac{\mathbf{p}}{\mathbf{n}_{\mathrm{i}}}\right)$	(27)
(written for boron diffusing with neutral and positive interstitials as an examp	le).
	52

Summary of Key Ideas

- Selective doping is a key process in fabricating semiconductor devices.
- Doping atoms generally must sit on substitutional sites to be electrically active.
- Both doping concentration and profile shape are critical in device electrical characteristics.
- Ion implantation is the dominant process used to introduce dopant atoms. This creates damage and thermal annealing is required to repair this damage.
- During this anneal dopants diffuse much faster than normal.
- Atomistic diffusion processes occur by pairing between dopant atoms and point defects.
- In general diffusivities are proportional to the local point defect concentration.
- Point defect concentrations depend exponentially on temperature, and on Fermi level, ion implant damage, and surface processes like oxidation.
- As a result dopant diffusivities depend on time and spatial position during a high temperature step.
- Powerful simulation tools exist today which model these processes and which : can predict complex doping profiles.

68

Assignment #1 (due 16th April)

Camp	bell:	Pro	ble	ms	

(Use text data rather than lecture slides)

	2.7	3.5
	2.8	3.7
	2.11	3.8
	2.13	3.14
2012		ECE 416/516 Spring 2010

4/9/2012

Practical Diffusions

Low concentrations:

- surface concentration in equilibrium with ambient gas

High concentrations (e.g. emitter diffusion) :

- surface concentration = solid solubility in wafer
- supplied from surface film

Limited source diffusions(e.g. base diffusion)

- Finite thickness film on wafer surface
- all consumed, typically less than monolayer
- ion implantation

- Infinite source diffusion for short time (pre-deposition) to establish limited source quantity $\ensuremath{\mathsf{Q}}$

- low surface concentration and deep diffusion

Time Dependent Diffusion

```
If D=D(t), e.g. for T=T(t)
                e.g. furnace insertion/withdrawl
                                                                                         = \int_{0}^{t_0} D(t) dt
                                                                          (Dt)<sub>eff</sub>
write \partial \tau = D(t) \partial t
                                                                                         = \int_{0}^{t_0} D_0 \exp -E_0/kT(t) dt
                i.e. \tau = \int_{0}^{t_0} D(t) dt = (Dt)_{eff}
                                                                                         = 0^{\int t_0} D_0 \exp (-(E_0/kT_0)(1+Ct/T_0)) dt
                D^{-1}(\partial N / \partial t) = \partial^2 N / \partial x^2
 and
                                                                                          = {}_{0} \int {}^{t_{0}} D(T_{0}) \exp -(CE_{0}/kT_{0}^{2})t . dt
                                --> \partial N / \partial \tau = \partial^2 N / \partial x^2
                                                                                          = D(T_0) [(1-exp-(CE_0/kT_0^2)t_0)]/(CE_0/kT_0^2)
                                                                                          \approx D(T<sub>0</sub>) [kT<sub>0</sub><sup>2</sup>/CE<sub>0</sub>] if t<sub>0</sub> --> \infty
Assume linear T(t) variation
                                                                             Additional effective time kT<sub>0</sub><sup>2</sup> / CE<sub>0</sub> at temp T<sub>0</sub>
                - i.e. T=T<sub>0</sub>-Ct (ramp down)
                                                                                                              due to a slow ramp-down
T^{-1} = (T_0 - C t)^{-1}
                                                                             Note: ramp-up --> symmetrical effective time
     = T_0^{-1} (1 - C t / T_0)^{-1}
                                                                             e.g. for T_0=900°C, E_0=4eV, C=900°C/20min
     \approx T_0^{-1} (1+ C t / T_0 ) for T_0 >> C t
                                                                             \Delta t{=}1.38 x 10^{\text{-}23} (1173)^2 20/900.4 (1.6 x 10^{\text{-}25}) \approx 45 s
```

Dissociation	
(Mixed diffusion revisited) • S <> I + V Substitutional Interstitial Vacancy Interstitial D _i ' >> D _s substitutional, ∴assur	ne substitutional impurities immobile
Region of high concentration Interstitials move out faster, ∴ Equation driven L>R ∴ many substitutional impurities convert to interstitial & also move out ∴ High apparent D	$\label{eq:second} \begin{array}{l} \underline{\text{Two extreme cases for low concn. region (S < I + V)}} \\ \bullet \text{Semiconductor highly dislocated} \\ \text{lots of vacancies, reaches equilibrium} \text{quickly} \\ \text{More Interstitials moving in than substitutionals} \\ \upsilon_{\text{eff}} \sim \upsilon_i \; N_i / (N_i + N_s) \; \text{> } D_{\text{eff}} \sim D_i^{~\prime} \; N_i / (N_i + N_s) \end{array}$
Region of low concentration: More Interstitials moving in than substitutiona ∴Equation driven R>L ∴Interstitials convert to substitutionals & move more slowly ∴Low apparent D	•Low dislocation density Il Equilibrium slow & equation R>L (limited by low vacancy conc'n) $\therefore N_i$ is equilibrium value $\upsilon_{eff} \sim \upsilon_v n_v/(n_v+n_s) \dashrightarrow D_{eff} \sim D_\upsilon n_v/n_s$ where D_v = self-diffusivity of Si atoms

Account for ramp-down: extra 45sec at 900°C

Substitutional Impurity Diffusion

$$\begin{split} \delta(N_s+N_i)/\partial t &= \partial(D_s'.\partial N_s/\partial x + D_i'.\partial N_i/\partial x)/\partial x \\ \text{for } N_s &>> N_i ---> \\ & \partial N_s/\partial t \approx \partial [(D_s' + D_i'.\partial N_i/\partial N_s)(\partial N_s/\partial x)]/\partial x \\ \text{i.e. for substitutional impurity diffusion} \\ & \text{effective } D \approx D_s' + D_i' (\partial N_i/\partial N_s) \\ & \approx (D_i')(\partial N_i/\partial N_s) \text{ for } D_i' >> D_s' \\ \text{and } \partial N_i/\partial N_s \text{ depends on the dissociation mechanism} \end{split}$$

As in Si

$D_{eff} = h \left[D_i^0 + D_i^+ (p/n_i) + D^-(n/n_i) + D^{2-}(n/n_i)^2 \dots \right]$	
For AS, there are $AS(1-V^3) \otimes AS(1-V)$ levels	
$\therefore D = h[D_i^0 + D_i^- (n/n_{ie})]$	
$n_{ie}\text{=}\text{intrinsic}$ electron concentration at high N_{D}	
(solid solubility limited, i.e. $N_D >> n_{ie}$)	
& h = 2, $\therefore D \circledast 2 D_i^- (N_D/n_{ie})$	
This is 1st-order conc'n dependent diffusion	
[see back; compare $D=K_1D_0N=D_{surf}(N/N_{surf})$]	<u>EITHER</u> use previous result $x_j=2D_i^{-}(N_{surf}/n_{ie})$
	$x_j = 1.616 (D_{surf} t)^{1/2}$
	$x_j = 1.616 (2D_i^- (N_{surf}/n_{ie})t)^{\frac{1}{2}}$
	$x_j = 2.29 (N_{surf}/n_{ie})^{\frac{1}{2}} (D_i^- t)^{\frac{1}{2}}$
	where D_i^1 =22.9 exp - 4.1eV/kT
	<u>OR</u> solve $D=2D_i^{-}(N/n_{ie})$ in closed form>
	$\text{N=N}_{\text{surf}}(1\text{-}0.87\text{y}\text{-}0.45\text{y}^2)$ where $\text{y}\text{=}\text{x}(4\text{D}_{\text{surf}}t)^{1/2}$

B in Si

Low surface conc'n --> use constant D High conc'n --> B(I-V⁰), B(I-V⁺) levels $\therefore D=h[D_i^{0+} D_i^+ (p/n_i)]$ n_i not significantly affected by N_A usually $h \sim 1$, D=3.17 exp -(3.59eV/kT) EMPIRICALLY: $x_j \cong 2.45(N_{surf}/n_i)^{1/2}$ (Dt)^{1/2} OR: $N \cong N_{surf} (1 - y^{2/3})$, where $y=(x^2/6D_{surf}t)^{3/2}$

