ECE 416/516 IC Technologies

Lecture 16: Back-End Processing & Manufacturing

Professor James E. Morris Spring 2012

Year of Production	1998	2000	2002	2004	2007	2010	2013	2016	2018
Technology N ode (half pitch)	250 nm	180 nm	130 nm	90 nm	65 nm	45 nm	32 nm	22 nm	18 nm
MPU Printed Gate Length		100 nm	70 nm	53 nm	35 nm	25 nm	18 nm	13 nm	10 nm
Min Metal 1 Pitch (nm)				214	152	108	76	54	42
Wiring Levels - Logic				10	11	12	12	14	14
Metal 1 Aspect Ratio (Cu)				1.7	1.7	1.8	1.9	2.0	2.0
Contact Aspect Ratio (DRAM)				15	16	>20	>20	>20	>20
STI Trench Aspect Ratio				4.8	5.9	7.9	10.3	14	16.4
Metal Resistivity (µohm-cm)	3.3, 2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
Interlevel Dielectric Constant	3.9	3.7	3.7	<2.7	<2.4	<2.1	<1.9	<1.7	<1.7

• More sophisticated analysis from the 2003 ITRS interconnect roadmap.

• Global interconnects dominate the RC delays.

• "In the long term, new design or technology solutions (such as co-planar waveguides, free space RF, optical interconnect) will be needed to overcome the performance limitations of traditional interconnect." (ITRS)

2

7.

	Metal 0xide N⁺ P N⁻	
	P-substrate	
-	Figure 15.3 Cross section of simple bipolar technology with a metal line crossing the junction isolation region, forming a parasitic MOSFET.	
	Metal	
	Oxide N+ P+ P N+ P barrier n n	
	P-substrate	
Figure 15.5 Gua	ard ring isolation for the bipolar technology from Fig	ure 15.3.
Fabrication Engineering a Micro- and Nanoscale	at the Campbell Copyright © 2009 by Oxford University Press, Inc.	

Remember:	$\tau_{\rm L} =$	0.89RC	C = 0.89	•K _I K _o	_{ox} ε₀ρL ²	$\left(\frac{1}{Hx_{ox}}\right)$	$+\frac{1}{WL_S}$.)	(1)
Year of Production	1998	2000	2002	2004	2007	2010	2013	2016	2018
Technology N ode (half pitch)	250 nm	180 nm	130 nm	90 nm	65 nm	45 nm	32 nm	22 nm	18 nm
MPU Printed Gate Length		100 nm	70 nm	53 nm	35 nm	25 nm	18 nm	13 nm	10 nm
Min Metal 1 Pitch (nm)				214	152	108	76	54	42
Wiring Levels - Logic				10	11	12	12	14	14
Metal 1 Aspect Ratio (Cu)				1.7	1.7	1.8	1.9	2.0	2.0
Contact Aspect Ratio (DRAM)				15	16	>20	>20	>20	>20-
STI Trench Aspect Ratio			- (4.8	5.9	7.9	10.3	14	16.4
Metal Resistivity (µohm-cm)	3.3, 2.2	2.2	2.2	2.2	22	2.2	2.2	2.2	2.2
Interlevel Dielectric Constant	3.9	3.7	-	<2.7	<2.4	⊲.1	<1.9	<1.7	<1.7
• Reduce metal resis • Aspect ratio - advar • Reduce dielectric c	tivity nced c onsta	· use C leposi nt - us	Cu inst tion, e e low-l	ead of tching K mate	f Al. I and p erials.	olanariz	ation	metho	ods.

Material class	Material	Dielectric constant	Deposition technique
Inorganic	SiO ₂ (including PSG and BPSG)	3.9-5.0	CVD/Thermal ox./Bias- sputtering/HDP
	Spin-on-glass (SiO ₂) (including PSG, BPSG)	3.9-5.0	SOD
	Modified SiO ₂ (e.g. fluorinated SiO ₂ or hydrogen silsesquioxane - HSQ)	2.8-3.8	CVD/SOD
	BN (Si)	>2.9	CVD
	Si ₃ N ₄ (only used in multilayer structure)	5.8-6.1	CVD
Organic	Polyimides	2.9-3.9	SOD/CVD
	Fluorinated polyimides	2.3-2.8	SOD/CVD
	Fluoro-polymers	1.8-2.2	SOD/CVD
	F-doped amorphous C	2.0-2.5	CVD
Inorganic/Org- anic Hybrids	Si-O-C hybrid polymers based on organo-silsesquioxanes (e.g. MSQ)	2.0-3.8	SOD
Aerogels (Microporous)	Porous SiO ₂ (with tiny free space regions)	1.2-1.8	SOD
Air bridge		1.0-1.2	

All of these approaches are beginning to appear in advanced process flows today

34

Lecture Topics & Objectives

- Contamination, Defects & Distributions
- Yield
 - uniform defects
 - non-uniform defects
 - multiple defect types
- · Reliability & Failure
 - distributions and plotting
 - target failure rates
 - accelerated testing

• <u>Objective</u>: Can use reliability statistics with various models

Oxidant/ Reductant	Standard Oxidation Potential (volts)	Oxidation-Reduction Reaction
Mn ²⁺ /Mn	1.05	$Mn \leftrightarrow Mn^{2+} + 2e^{-}$
SiO ₂ /Si	0.84	$Si + 2H_2O \leftrightarrow SiO_2 + 4H^+ + 4e^-$
Cr ³⁺		$Cr \leftrightarrow Cr^{3+} + 3e^{-}$
Ni ²⁺		$Ni \leftrightarrow Ni^{2+} + 2e^{-}$
Fe ³⁺		$Fe \leftrightarrow Fe^{3+} + 3e^{-}$
H_2SO_4		$H_2O + H_2SO_3 \leftrightarrow H_2SO_4 + 2H^+ + 2e^-$
Cu ²⁺		$Cu \leftrightarrow Cu^{2+} + 2e^{-}$
O ₂		$2H_2O \leftrightarrow O_2 + 4H^+ + 2e^-$
Au ³⁺		$Au \leftrightarrow Au^{3+} + 3e^{-}$
H_2O_2		$2H_2O \leftrightarrow H_2O_2 + 2H^+ + 2e^-$
O ₃		$O_2 + H_2O \leftrightarrow O_2 + 2H^+ + 2e^-$

- The strongest oxidants are at the bottom (H₂O₂ and O₃). These reactions go to the left grabbing e⁻ and forcing (6) to the right.
- Fundamentally the RCA clean works by using H₂O₂ as a strong oxidant.

44

Problem is:

Place n balls in N cells. Calculate probability that a given cell contains k balls. For n defects spread over N chips on wafer, probability that given chip contains k defects $= P_{k} = n! / (k! (n-k)!) N^{-n} (N-1)^{n-k}$ (Binomial distribution)

> $\approx e^{-m} m^k / k!$ (Poisson distribution) for n & N large, n/N = m finite

$$Y_{1} = \exp - D_{0}A$$

$$Y_{2} = (D_{0}A)^{-2}$$

$$Y_{3} = (2D_{0}A)^{-1}$$

$$\& Y_{2}, Y_{3} >> Y_{1}$$

ie. not as pessimistic as Y_{1}

Yield with Redundancy

Yield with redundant circuit designed into chip:

 $Y_1 = P_0 + \eta P_1$

 P_0 is defect probability P_1 is probability of one defect η is probability that one defect can be "repaired" by redundancy.

Various Defects #2

Radial Dependence Many defect types have radial dependence, especially handling, misalignment, photoresist residue, etc. $\therefore D(r) = D_0 + D_R e^{(r-R)/L}, D_0 defect density at center, D_R increase at edge, r radial coordinate, R wafer$ radius, L characteristic length for edge defects $<math display="block">\therefore Y_R = (\pi R^2)^{-1} {}_0 {}^{\int R} Y dA, \quad (A = \pi r^2, dA = 2\pi r dr)$ --> integrate Poisson yield factor over wafer $= 1 / (\pi R^2) {}_0 {}^{\int R} e^{-D(r)A} 2\pi r dr$ $= 2R {}^{-2} {}_0 {}^{\int R} e^{-D(r)A} r dr$

Target Failure Rates						
FIT	Fails/month	% failures in				
		10yr life				
10	0.7	0.1%				
100	7.0	1%				
1000	70	10%				
10,000 devices						
FIT	Fails/month	% systems				
		failing/month				
10	0.07	1%				
100	0.7	10%				
1000	7.0	65%				

Та	Target Failure Rates							
_	200 devices							
	FIT	MTTF		% s	systems			
		(years)		failing/month				
	10	51		0	.16%			
	100	5			1.6%			
	1000	0.5			16%			
				Run 500 devices for 6 months				
100	100 devices on test		Γ	Confiden	ce	Failure rate		
FIT	Time to	0		level (%)		(FIT)		
	1 st failu	ıre	re 99			2100		
10	114 vrs	5		95		1400		
100	11 vrs	$\frac{11}{11} \text{ yrs}$		90		1100		
100	$\frac{11 \text{ yr}}{0}$			60		430		
100	0 I yı		L	Best estin	nate	325		

Accelerated Testing

For 100 FIT

must wait 114 years for 1 device from 100 to fail.

Need $10^5 - 10^{11}$ hrs (depends on σ) for median life.

∴ Obviously need to speed up failure rates & relate back.

Temperature Acceleration

Acceleration Factors						
Incr T	Acceleration factor Time equiv to 40					
(°C)	E=1eV	E=05eV	E=1eV	IS) E=0.5aV		
85	11.5	1_{a} 0.50 V 3.4	$\frac{L_a - 10 v}{30,000}$	103,000		
125	300	17	1200	20,200		
150	1700	41	200	8,526		
200	31,000	176	11	2,000		
250	320,000	570	1.1	616		
300	2,200,00	1500	0.2	233		

$\begin{array}{l} \textbf{Princ Princ Pri$

Reliability & Failure: PDF

Probability Density Function (pdf) f (t) = dF(t) /dt ie. F(t) = $_0^{\int t} f(x) dx$ \therefore R(t) = 1 - F(t) $= _0^{\int \infty} f(x) dx - _0^{\int t} f(x) dx$ $= _t^{\int \infty} f(x) dx$ f(t) = d/dt (1 - R(t)) = - d/dt R(t)

Reliability & Failure: Hazard Rate i.e. instantaneous failure rate (not average) $F(t+\Delta t) - F(t) = R(t) - R(t+\Delta t)$ =fraction of devices good at t which fail by t+ Δt Average failure rate during Δt $= (1 / \Delta t) [(R(t) - R(t+\Delta t)) / R(t)] = \lambda(t)$, because divide by number left at t \therefore as $\Delta t \longrightarrow 0$, $\lambda(t) \longrightarrow R(t)^{-1} dR(t)/dt$ $= - d/dt \ln R(t) = f(t)/R(t) = f(t)/(1-F(t))$ ie. $R(t) = \exp [-_0 \int^t \lambda(x) dx]$ instantaneous failure rate

Reliability & Failure: MTTF

Mean time to failure (MTTF) = mean time between failures MTB if repair assumed MTTF = $_0^{\int_{\infty}} t f(t) dt$ ie. average age at failure

A: Constant Failure Rate

 $\lambda(t) = \lambda_0 \qquad \text{constant}$ $\therefore R(t) = e^{-\lambda_0 t} \& F(t) = 1 - e^{-\lambda_0 t}$ $\therefore f(t) = d/dt F(t) = \lambda_0 e^{-\lambda_0 t}$ $\& \text{MTTF} = {}_0 \int^{\infty} t \lambda_0 e^{-\lambda_0 t} dt$ $= \lambda_0 [t e^{-\lambda_0 t} / -\lambda_0 - {}_0 \int^{\infty} e^{-\lambda_0 t} / -\lambda_0 dt]$ $= [-te^{-\lambda_0 t} + e^{-\lambda_0 t} / -\lambda_0]_0^{\infty} = 1 / \lambda_0$

Note: Bimodal distributions

