



### **Lecture Topics**

- Evaporation Sources
- Evaporation Rate
- Deposited Thicknesses
- Alloy composition & contamination
- Deposition thickness/rate monitors
- Homogeneous nucleation
- Heterogeneous nucleation
   Capillary theory
   Spherical cap nuclei
   Shapes, charge, fields
   Nucleation rate
  - Atomistic theory
  - · Kinetic theory

- Sputtering systems
- Sputtering processes
- Sputtering yield
- Effects of bias, etc.
- Thornton diagram
- Contamination
- Stress

### **Lecture Objectives**

• Can calculate evaporation and deposition rates, thickness, variations, and contamination

- Have knowledge of standard PVD hardware and techniques
- Able to explain nucleation and growth concepts

Distinguish homogeneous and heterogeneous nucleation
Can calculate critical nucleus sizes and nucleation rates for capillary, atomistic and kinetic models.

•Be able to explain physics of sputtering, yields, and various system configurations

•Anticipate the effects of bias, contamination and stress



| Metal line                                                                                                                                                | Conta     | ict hole     |        |                                   |       |       |       |       |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|--------|-----------------------------------|-------|-------|-------|-------|-------|
|                                                                                                                                                           |           |              |        | Aspect ratio = $AR = \frac{h}{w}$ |       |       |       |       |       |
| Year of Production                                                                                                                                        | 1998      | 2000         | 2002   | 2004                              | 2007  | 2010  | 2013  | 2016  | 2018  |
| Technology N ode (half pitch)                                                                                                                             | 250 nm    | 180 nm       | 130 nm | 90 nm                             | 65 nm | 45 nm | 32 nm | 22 nm | 18 nm |
| MPU Printed Gate Length                                                                                                                                   |           | 100 nm       | 70 nm  | 53 nm                             | 35 nm | 25 nm | 18 nm | 13 nm | 10 nm |
| Min Metal 1 Pitch (nm)                                                                                                                                    |           |              |        | 214                               | 152   | 108   | 76    | 54    | 42    |
| Wiring Levels - Logic                                                                                                                                     |           |              |        | 10                                | 11    | 12    | 12    | 14    | 14    |
| Metal 1 Aspect Ratio (Cu)                                                                                                                                 |           |              |        | 1.7                               | 1.7   | 1.8   | 1.9   | 2.0   | 2.0   |
| Contact As pect Ratio (DRAM)                                                                                                                              |           |              |        | 15                                | 16    | >20   | >20   | >20   | >20   |
| STI Trench Aspect Ratio                                                                                                                                   |           |              |        | 4.8                               | 5.9   | 7.9   | 10.3  | 14    | 16.4  |
| Metal Resistivity (µohm-cm)                                                                                                                               | 3.3, 2.2  | 2.2          | 2.2    | 2.2                               | 2.2   | 2.2   | 2.2   | 2.2   | 2.2   |
| Interlevel Dielectric Constant                                                                                                                            | 3.9       | 3.7          | 3.7    | <2.7                              | <2.4  | <2.1  | <1.9  | <1.7  | <1.7  |
| <ul> <li>Note the aspect ratios and the need for new materials.</li> <li>Note also the number of metal layers requiring more deposition steps.</li> </ul> |           |              |        |                                   |       |       |       |       |       |
| 5/14/2012                                                                                                                                                 | ECE 416/5 | 16 Spring 20 | 011    |                                   |       |       |       |       | 6     |













## **Deposition rates**

Number gas molecules crossing plane/unit area.unit time

$$J_{n} = \sqrt{\frac{P^{2}}{2\pi m kT}} \text{ gives mass evaporation rate } R_{ME} = \sqrt{\frac{m}{2\pi kT}} P_{e}$$
  
so mass loss rate at crucible  $R_{ML} = \int \sqrt{\frac{m}{2\pi kT}} P_{e} dA = \sqrt{\frac{m}{2\pi k}} \int \frac{P_{e}}{\sqrt{T}} dA$ 
$$R_{ML} \approx \sqrt{\frac{m}{2\pi k}} \frac{P_{e}}{\sqrt{T}} A \text{, for T uniform and A constant}$$

**Example 12.1:** Hemispherical water droplet, radius ro=1mm, in vacuum at 300K. How long to evaporate?





































































#### Homogeneous Nucleation: Gibbs Free Energy





## **Homogeneous Nucleation: Growth**

For nucleus  $r < r^*$ ,  $\Delta G$  decreases by breaking up.

For nucleus  $r > r^*$ ,  $\Delta G$  decreases by growth.

If P/P<sub> $\infty$ </sub> large, i.e. high supersaturation,  $|\Delta G_v|$  incr. --> r\* decr.

Note: This is classical bulk thermodynamic approach. As r\* ->  $r_{atomic}$ , cannot use bulk values of  $\sigma$ , surface concept, etc.



#### Heterogeneous Nucleation: Residence Time



### Heterogeneous Nucleation: Adsorption Rate

Note: Assumes only adatom population with no further interaction. If  $N \downarrow -->o$  (deposition stopped),  $N_{ad} -->o$ , i.e. all eventually re-evaporate. Adsorption Rate:  $dN_{ad}/dt = N \downarrow - N \uparrow = N \downarrow - N_{ad} / \tau$ Solve:  $dN_{ad}/(N \downarrow \tau - N_{ad}) = dt / \tau$  for  $N_{ad} = o$  at t = o, gives:  $N_{ad}(t) = N \downarrow \tau (1 - exp - t / \tau)$  $--->N \downarrow \tau$  for  $\tau << t$ i.e. independent of time for weak physical adsorption. (compare steady state result previous slide)  $--->N \downarrow t$  for  $\tau >> t$ i.e. defines "complete condensation" for strong adsorption or initial transient.

#### Heterogeneous Nucleation: Surface Diffusion











| Data:Surface Energies |                                  |                                |                                 |                              |  |  |  |
|-----------------------|----------------------------------|--------------------------------|---------------------------------|------------------------------|--|--|--|
|                       |                                  | -                              |                                 |                              |  |  |  |
|                       |                                  |                                |                                 |                              |  |  |  |
|                       |                                  |                                |                                 |                              |  |  |  |
| Ag at                 | 1173k                            | σ c-v=1140 erq/cm <sup>2</sup> | ∂σ,/∂⊤                          | =-0.47 erg/cm <sup>2</sup> k |  |  |  |
| Au                    | 1276k                            | 1450                           | 1                               | =-0.43                       |  |  |  |
| Cu                    | ,<br>1323k                       | 1550                           |                                 | =-0.46                       |  |  |  |
| Sn                    | 488k                             | 685                            |                                 | •                            |  |  |  |
| (fi                   | om creep ra                      | tes at melting point)          |                                 |                              |  |  |  |
| Al                    | AL                               |                                |                                 |                              |  |  |  |
| Cd                    |                                  | 743                            |                                 |                              |  |  |  |
| Fe                    |                                  | 1520                           |                                 |                              |  |  |  |
| Pb                    |                                  | 528                            |                                 |                              |  |  |  |
| Mg                    |                                  | 643                            |                                 |                              |  |  |  |
| Zn                    |                                  | 932                            |                                 |                              |  |  |  |
| (fi                   | rom liquid su                    | urface tensions at melting     | j point)                        |                              |  |  |  |
| glass                 |                                  | 250-360                        | $\mathbf{i}$                    |                              |  |  |  |
| Polym                 | ners(non-pol                     | ar) <100                       |                                 |                              |  |  |  |
| Polym                 | ners(polar)                      | <300                           | >                               |                              |  |  |  |
| γ Al₂C                | γ Al <sub>2</sub> O <sub>3</sub> |                                | 560 / "Total" energy (all above |                              |  |  |  |
| CdO                   | CdO                              |                                | 500 are "free" energy).         |                              |  |  |  |
| CuO                   | CuO                              |                                |                                 |                              |  |  |  |
| MgO                   | MgO                              |                                | /                               |                              |  |  |  |
| Mg(O                  | Mg(Oh)₂cryst                     |                                | /                               |                              |  |  |  |
| Sn₂O                  |                                  | 140                            | í                               |                              |  |  |  |

| Data:Adsorption Energy |    |       |                        |                       |  |
|------------------------|----|-------|------------------------|-----------------------|--|
|                        |    |       | <u>O</u> <sub>ad</sub> | <u>Q</u> <sub>D</sub> |  |
| Na                     | on | W     | -2.73eV                | _                     |  |
| Rb                     |    | W     | -2.60                  |                       |  |
| Cs                     |    | W     | -2.80                  | o.61eV                |  |
| Ba                     |    | W     | -3.80                  | 0.65                  |  |
| W                      |    | W     | -5.83                  | 1.31                  |  |
| Hg                     |    | Ag    | -0.11                  |                       |  |
| Cd                     |    | Ag    | -1.61                  |                       |  |
| Al                     |    | NaCl  | -0.60                  |                       |  |
| Cυ                     |    | glass | -0.14                  |                       |  |
| Hg                     |    | Hg    |                        | 0.048                 |  |

# **Capillary Example: #1** Ag on glass at 300k at 1A/sec. $\sigma_{c-v}=1140 - 0.47(300-1173)$ at 1173k (temp correction) $= 1550 \text{ ergs/cm}^2$ $\sigma_{s-c} = \sigma_{c-v} + \Delta G_{ad} < ---- (-ve)$ Free energy of absorption $O_{ad} \sim 0.12 \text{ eV} \times 1.6 \times 10^{-19} \text{ J/eV} \times 10^7 \text{ ergs/J} / \pi (1.5 \times 10^{-8} \text{ cm})^2$ $= 300 \text{ ergs/cm}^2$ i.e. $\sigma_{sc} \sim 1550-300 = 1250 \text{ ergs/cm}^2$ $\sigma_{s-v} = 300 \text{ ergs/cm}^2 (250 \text{ to } 360)$ $\Delta G_v = -1.9 \times 10^{-11} \text{ ergs/cm}^3$

### Capillary Example: #2

 $\begin{array}{l} \underline{Ag \ on \ glass \ at \ 300k \ at \ 1A/sec.}} (continued) \\ \underline{AG}_v = -1.9 \times 10^{11} \ ergs/cm^3 \\ N\uparrow \ \sim 10^{-40} \ \tau \ from \ vapor \ pressure \ data \\ \underline{8N} \downarrow \ \sim 10^{-6} \ \tau \\ from \ p(\tau) = (MT)^{1/2} / [3.5 \times 10^{22} A] (dN/dt) / \ s.cm^2 \\ Assuming \ hemispherical \ cap \ i.e. \ \theta = 90^{\circ} \ , \\ r^* \ \sim \ 0.22nm \ for \ Ag \ on \ glass \\ Similarly \ for \ W \ on \ glass, \ r^* \ even \ less \end{array}$ 

r\* ≤ atomic radius Can't use macroscopic concepts like surfaces





# **Nucleation Rate**

Adatom residence time  $\tau = v^{-1} \exp -Q_{des}/kT$ where  $N \downarrow = N_A P/(2\pi MRT)$   $N_{ad} = N \downarrow \tau$ Nucleation rate  $N^R = N*A*\omega$ where  $N^* = n_s \exp -\Delta G^*/kT$   $n_s = nucleation site density$   $A^* = 2\pi r^* a_o \sin \theta$ (area of circumferential belt of adjacent atoms) Impingement rate onto area  $A^*$ ,  $\omega = \tau N \downarrow D$ , and  $N^R = 2\pi r^* a_o \sin \theta PN_A/(2\pi MRT)^{1/2} n_s \exp(E_{des} - E_{diff} - \Delta G^*)/kT$ = Rate of creation super critical nucleus






















































































\_10

.1

Annealed

10

1

Oxygen partial pressure  $100 \times 10^{-16} \tau$ 



## 54





































































