

Lecture Topics & Objectives

• <u>Topics</u>	• <u>Objectives</u>
•Wet Etching •Anisotropy •Chemistry	 Can explain the principles of wet and dry etch chemistries
•Dry Etching •Bond chemistry	 Can quantify anisotropies, etch rates, selectivity, loading,etc.
•Physical effects •Reactive Ion Etching	 Can explain RIE tradeoffs.
•ION MIIIING	3

7

35

Selectivity #1

5/7/2012

Example: Etch SiO₂ film on Si. Etch rate $E_f = E_0 \pm e$ SiO₂ thickness $D_f = D_0 \pm d$ Nominal etch time $t_0 = D_0/E_0$ Thin areas etch in $t_1 = (D_0 - d)/(E_0 + e)$, and Worst case final time $t_2 = (D_0 + d)/(E_0 - e)$ \therefore Underlying Si may be etched for time $\Delta t' = t_2 - t_1 = 2(E_0d + D_0e)/(E_0^2 - e^2)$ in some areas, plus design margin $\Delta t''$ If max. thickness Si which can be removed is D_s at etch rate E_s , then $E_s < D_s/(\Delta t' + \Delta t'')$

ECE 416/516 Spring 2012

Selectivity	′ #2	
Material	Etch	Selectivity wrt:
Thermal SiO ₂	$C_2F_6 + CHF_3$	Si – 5:1 PR – 5:1
Doped CVD SiO ₂	$C_2F_6 + CHF_3$	Si – 30:1 PR – 10:1
Poly-Si	Cl ₂	SiO ₂ -15:1 PR-5:1
Al	$BCl_3 + Cl_2$	SiO ₂ -5:1 PR-5:1
		poly-Si – 3:1
Si ₃ N ₄	$CF_4 + O_2$	CVD SiO ₂ -1:1
		PR-3:1 polySi-1:8
Photo-resist (PR)	O ₂	$SiO_2 - 10^3$:1
		$Si - 10^3$:1
5/7/2012 ECE 4:	.6/516 Spring 2012	36

Plasma etch process at 30nm/min for single wafer. With 2 wafers, etch rate drops to 24nm/min. Predict etch rates for 3 and 4 wafers. Loading effect: Etch rate decreases with area being etched. Eq'n 11.8: Rate $R = \frac{R_0}{1+kA}$ where R_0 = empty chamber rate, A=etch area, and k=constant So: $\frac{R_1}{R_2} = \frac{30}{24} = 1.25 = \frac{1+2kA_1}{1+kA_1}$ giving $kA_1 = \frac{1}{3}$, and $R_0 = R_1(1+kA_1) = 40nm/min$ so $R_3 = \frac{40nm/min}{1+3(1/3)} = 20nm/min$, and $R_4 = \frac{40nm/min}{1+4(1/3)} = \frac{120}{7} \approx 17nm/min$

Reactive lon Et	ching (RIE)	
lon assisted etching	g	
Wafers on cathode: ion bombardment		
Electron transfer from substrate.		
Examples:		
RIE: Si/F ₂	RIE: Si/Cl ₂	
RIE: Si/XeF ₂	RIE: AI/F ₂	
Electron stimulated etching		
5/7/2012 ECE 416/516 Spring 2012		51

