

 Glow 	Discharge
--------------------------	-----------

- Cathode Sheath Ionization
 - Electron Emission
 - Space Charge Current
- Glow Region
- Electrons & lons
 Energies & Currents
- Anode/Cathode potentials
- Plasma Sheath
 Debye Shielding
- Langmuir Probe
- RF Discharge
- Self-bias
- Matching
 Potential distribution
- Plasma Applications

Collisions:						
d~0.3nm ↓d						
for N ₂ , O ₂						
Collision c/s = $\pi d^2 = 4\pi r^2$						
Probability of collision over length $\ell = p = \ell \pi d^2 n$						
for n molecules/unit vol.						
MFP = $\lambda = \ell = \frac{1}{\pi d^2 n}$ when $p = 1, \rightarrow \frac{1}{\sqrt{2\pi} d^2 n} \rightarrow \frac{kT}{\sqrt{2\pi} d^2 P} / \frac{kT}{\sqrt{2\pi} d^2 P}$						
Also: See Table 10.1 for diffusivity, viscosity, thermal conductivity						
And, flux/unit area impinging on surfaces per unit time,						
$J = n\overline{v_x}/2 = \sqrt{n^2 kT/2\pi m} = \sqrt{p^2/2\pi m kT}$						
For N ₂ , Flux (molecules/cm ² .s)	1atmos (760τ) 3x10 ²³	7.6mτ 3x10 ¹⁸	7.6x10⁻ ⁶ τ 3x10¹⁵	7.6x10 ⁻⁹ τ 3x10 ¹² 3x10 ⁴ /μm ² .s		
				3/(10nmx10nm).s		
4/30/2012	ECE 416/516 Spring 2010			8		

Impingement Rate (Ideal Gas Law)

Knudsen Number

- Define Knudsen number $K_n = \lambda/L$ where L physical dimensions characteristic of process
- For $K_n > 1$ --> high vacuum
 - •(Molecular flow regime)
- For $K_n < 0.01 \rightarrow$ fluid flow
 - (Viscous flow regime)

Gas Transport: Mass

•Mass Fick's Law --> Diffusing flux $J_A = -D_{AB} (dn_A/dx)$ Diffusivity $D_{AB} (m^2/s) = \frac{1}{4} v \lambda \approx T^{7/4} (M_A^{-1} + M_B^{-1})^{1/2} / p(a_A + a_B)^2$ from Kinetic Theory •Momentum --Shear Stress $\tau (N/m^2) = \eta (du/dx)$ where viscosity $\eta (Poise) \eta = \frac{1}{4} nmv\lambda \approx (MT)^{1/2}/a^2$ •Energy (heat) Conductive heat flux: $\Phi (w/m^2) = -K_T (dT/dx)$ (Fourier's Law) Thermal conduction : $K_T (W/mK) = \frac{1}{2}n(c_v/N_A)v\lambda \approx (T/M)^{1/2}c_v/a^2$

Low Pressure Properties of Air (22°C)						
Pres	sure	Ptle Density	Av Ptle	mfp	Ptle flux	
(torr)	(Pa)	/m ³	spacing		(/nm ² s)	
760 τ	101 Kpa	2.48x10 ²⁵	3.43nm	65nm	2.86x10 ⁹	
0.75τ	100	2.45x10 ²²	34.4nm	66um	2.83x10 ⁶	
7.5 mτ	1	2.45x10 ²⁰	160nm	6.6mm	2.83x10 ⁴	
7.5x10 ⁻⁶	10 ⁻³	2.45x10 ¹⁷	1.6um	6.64m	28.3	
7.5x10 ⁻⁸	10 ⁻⁵	2.45x10 ¹⁵	7.4um	664m	28.3/10nm ²	
7.5x10 ⁻¹⁰	10 ⁻⁷	2.45x10 ¹³	34.4um	66Km	28.3/100nm ²	

10

Standard Conductance (C[l/s])

High vacuum

Momentum transfer to gas particles

Limited range Needs roughing pump

Compression ratio ~108

 Figure 10.9 Cutaway view of a diffusion pump (courtesy Varian).

 Fabrication Engineering at the Micro- and Nanoscale
 Campbell
 Copyright © 2009 by Oxford University Press, Inc.

Pump down: Outgassing

Pressure Measurement: Direct Gauges (Wall displacement)

- Solid wall
 - Radiometer
 - Bourdon tube
 - •Diaphragm
 - Capacitance manometer
- Liquid wall
 - U-tube manometer
 - McLeod

Cathode Sheath: Electron Distribution

No. of ionizing collisions = $N_e(x).nq\Delta x$ at point x to x+ Δx $N_e(x)$ =electron density, n=neutral density, q=collision cross section ie. $\int dN_e(x) / N_e(x) = \int n q dx$ $\therefore N_e(x) = N_e(0) \exp n q x$ ie. electron multiplication & ionization across sheath so each ion at cathode produces $\gamma(\exp nqL - 1)$ other ions in dark space (typ. $\gamma \sim 0.25$).

Similarly Ion Impact ionization: est. rate ~ 0.15

Glow Region: Electron Ionization

Plasmas: Ion energy, Ion/Electron Velocities, & Plasma Currents

Electric Field: Acceleration = eE/m Distance traveled = $\frac{1}{2}$ (eE/m) t^2 Work done = eE. $\frac{1}{2}$ (eE/m) $t^2 \propto m^{-1}$	Particle flux (kinetic theory) $J = nv/4$ $j_e = (en_e v_e) / 4 \sim 38 \text{ mA/cm}^2$ $j_i = (en_i v_i) / 4 \sim 21 \mu\text{A/cm}^2$					
lons: Negligible energy from field $m \sim 6.6 \times 10^{-26} \text{ Kg}$ Thermal energy $\frac{1}{2} mv_i^2 = 3/2 \text{ kT}_i \approx 3/2 \text{ kT}$ lon $v_i \approx 5.2 \times 10^4 \text{ cm/sec}$ 0.04 eV $\Rightarrow T_i \approx 500 \text{K}$						
Neutral atoms: T = 293K \Rightarrow 0.026 eV, v = 4.0 x	10⁴ cm/sec					
Electrons:						
m $\sim 9.1~x~10^{-31}$ Kg, energy from $v_e \approx 9.5 x 10^7$ cm/sec, 2eV $\Rightarrow T_e \approx$	field 23,200K					

Plasma Sheath/Substrate Potential #2

Maxwell Boltzmann --> $n_e' = n_e \exp -[e(V_p - V_f)]/kT_e$ $\therefore n_e \cdot exp - e(V_p - V_f)/kT_e \cdot v_e / 4 = (n_iv_i) / 4$ $\& n_e = n_i (charge equality in plasma)$ $\therefore V_p - V_f = (kT_e/e) \ln (v_e / v_i)$ Also mean velocity $v = (8kT/\pi m)^{1/2}$ $\Rightarrow V_p - V_f = (kT_e/2e) \ln (m_iT_e/m_eT_i)$ Typ ~ 15v

RF Voltage Distribution

Assume space charge limited ion current density $j_i = KV^{3/2} / m_i^{1/2}D^2$ is equal at both electrodes

Summary

•Vacuum

- •Kinetic Theory --> vacuum, mfp, impingement
- Gas Flow --> conductance, pump speeds
- Vacuum Pumps and Gauges

•Plasmas

- •Glow discharge physics
- Cathode sheath current
- Plasma electron & ion energies
- Plasma sheath & electrode potentials
- Langmuir probe
- RF self-bias & electrode potentials