Week	Monday Lecture	Wednesday Lecture
4/02-4/04	1.Introduction (Ch1)	2. Substrates (Ch 2)
4/09-4/11	3.Diffusion (Ch 3)	4.Oxidation (Ch 4)
		SR I
4/16-4/18	5.Implantation (Ch 5)	6.Rapid Thermal Processing (Ch 6)
	Assign #1 Ch 1, 2, 3 due	SR
4/23-4/25	7. Optical Lithography (Ch 7)	8. Photoresist (Ch 8)
	Assign #2 Ch 4, 5 due	SR
4/30-5/02	9. Non-optical Litho (Ch 9)	10. Vacuum/plasma (Ch 10)
	Assign #3 Ch 6, 7 due	SR
5/07-5/09	11. Vacuum/plasma (Ch 10) cont'd	12. Etch (Ch 11) SR
	Assign #4 Ch 8, 9 due	
5/14-5/16	13. PVD: Physical Vapor Deposition	14. CVD: Chem Vapor Depos'n (Ch 13)
	(Ch 12) Assign #5 Ch 10 due	
		SRII
5/21-5/23	14. Epitaxy (Ch 14)	16. Back-end Processing (Ch 15)
	Assign #6 Ch 11, 12 due	& Manufacturing (Ch 20)
5/28-5/30	Memorial Day	Final Exam (lectures 10-16)
		Assign #7 Ch 13, 14, 15/20 due
6/04-6/06	Graduate presentations	No lecture
	Exam week	

ECE 416/516 IC Technologies Syllabus and Schedule (Spring 2012)

Lectures: Read the appropriate chapter before each lecture.

Lecture notes will be posted at <u>www.ece.pdx.edu/~jmorris/ece_416_&_516_IC_Technologies</u> Recitations: "SR" = Silicon Run; videos from this series will be run Wed 6.00-6.30pm in UTS208 as shown.

	This syllabus is a plan! Changes will be posted at		
	www.ece.pdx.edu/~jmorris/ece_416_&_516_IC_Technologies.		
Class time:	Lectures: Monday, Wednesday 18:40-20:30 UTS-208		
	Recitation:		
Instructor:	Professor James E. Morris		
	Office FAB 160-13; Tel: (503)725-9588; jmorris@ece.pdx.edu		
Office Hours:	Monday 4-5pm; Wednesday 10-11am		
Course	Students should be able to:		
Objectives:	• Explain the process flow for different microelectronic processes.		
	• Describe the processing steps (including the chemical and physical basis,)		
	manufacturing techniques, measurement techniques, and important output parameters.		
	Relate device characteristics to key process parameters.		
	• Use design rules to layout simple circuits and calculate yield.		
Main Topics:	Microelectronic processing of solid-state devices and integrated circuits. Process techniques		
	such as lithography, oxidation, diffusion, film deposition, etch, ion implantation, and back-end		
	processing will be discussed. Integration of processes for bipolar, CMOS, BiCMOS, and		
	MEMS fabrication processes. Defining system rules for IC layout. Packaging and yield.		
Prerequisite:	ECE 415/515 Fundamentals of Semiconductor Devices is listed in the Bulletin, but may be		
	waived upon request.		
Course website	Syllabus, notes, homework, etc. all on course website at		
	www.ece.pdx.edu/~jmorris/ece_416_&_516_IC_Technologies.		
	You must check before every class. Students will find it useful to print out notes prior to class,		
	or to view them on-line during class.		

Required	Fabrication Engineering at the Micro- and Nanoscale, Stephen A. Campbell, Oxford		
Textbooks:	University Press 2008, ISBN 978-0-19-532017-6		
Assignments and	ECE416	ECE516	
Grading:	40% Homework	30% Homework	
	30% Mid-term	25% Mid-term	
	30% Final	25% Final	
		20% Project/presentation	
Homework:	Problem assignments will be set one week bet	fore each due date in the Monday lecture (except	
	for Assignment #7).		
	Homework will be checked for satisfactory completion, but students will be responsible for		
	using the solutions provided for one week following the due date to check the details of their		
Duccontotions	Own work. No credit for fate nomework.		
Presentation:	Graduate students will do a presentation to the class in the last week of the term.		
Class Etiquette:	Students are expected to complete the assigned reading prior to class, attend regularly,		
Collaboration	Participate, and complete an assigned work. Turn off all cell phones.		
	result in both papers receiving no credit and may be written up as a code of conduct violation		
	See www.ess.pdx.edu/osa/osa.h.htm		
Reference	S Franssila Introduction to Microfabrication Wiley 2010 (2 nd ed.) ISBN 978-0-470-74983-8		
Books.	James D Plummer Michael D Deal and Peter B Griffin Silicon VLSI Technology		
Semiconductor	Fundamentals. Practice and Modeling Prentice Hall Upper Saddle River New Jersey 2000		
Fabrication:	ISBN 0-13-0850037-3.		
	Richard C. Jaeger, <i>Introduction to Microelectronic Fabrication</i> , Prentice Hall, 2002. (2 nd ed.)		
	ISBN 0-201-44494-1.		
	Gary S. May, Simon M. Sze, Fundamentals of Semiconductor Fabrication, Wiley, 2004.		
	S. Wolf and R.N. Tauber, Silicon Processing, vol. 1, (Lattice Press)		
	S.Wolf and R. N. Tauber, Silicon Processing	for the VLSI Era. (Lattice Press, 2000)	
Reference	Streetman, B.G. Solid State Electronic Device	es, Prentice Hall, Fifth Edition, 2000.	
Books, Device	Muller, R.S., and T.I Kamins. Device Electro	onics for Integrated Circuits. NY: Wiley, 1986.	
Physics	Modular Series on Solid-State Devices, Volum	nes I-IV. Reading, MA: Addison-Wesley.	
Reference	IEEE Transactions on Semiconductor Manufacturing,		
Journais:	IEEE Transactions on Electron Devices,		
	IEEE Electron Device Letters,		
Accommodation	If you have a recognized disability and are in need of academic accommodations, plassa potify		
Accommodation.	me (the instructor) immediately to arrange nee	eded support For more information about the	
	Disability Resource Center, see http://www.po	dx.edu/jasc/drc.html.	
Links of interest:	NanoHUB (NSF supported resource center at Purdue): http://nanohub.org		
	Multi-media streaming videos: http://www.m	ultimedia.vt.edu/ee-mse/	
	Simulation applets: http://jas2.eng.buffalo.ed	u/applets/	
	International Technology Roadmap for Semic	conductors web site: <u>http://public.itrs.net/</u>	
	Chip Shots Gallery: <u>http://micro.magnet.fsu.e</u>	edu/chipshots/index.html	
	Microfabrication Principles Learning Space (v	web based learning and self tests)	
	http://www.jhaj.net/jasjeet/tcad/index.html		
	UofL MicroTechnology Web Site		
	http://mitghmr.spd.louisville.edu	al Danka	
	Introduction to Microengineering by Dr. Daniel Banks		
	<u>Microsystems</u> Microsensors & Microgetuators by Dr. Doniol Bonks		
	http://www.dhanks.demon.co.uk/ueng/	s by Di. Daniel Danks	
	<u>intp.//www.uounks.uonion.co.uk/uong/</u>		

Introduction to Microengineering - Supplement by Dr. Daniel Banks
http://www.ee.surrey.ac.uk/Personal/D.Banks/roughgui.html
MUMPS Design Handbook by Cronos (Koester, Mahadevan, Shishkoff and Markus)
http://www.memsrus.com/cronos/svcsmumps.html
http://www.memsrus.com/cronos/mumps.pdf
An Introduction to Microelectronics Manufacturing and Markets
http://bmrc.berkeley.edu/courseware/ICMfg92/

Recommended supplementary lab course: ECE 410/510 Nanomaterials Fabrication (LaRosa) 2 credits

Thursday: PH1 8am-noon or PH2 1-5pm,

SRTC405