

Properties		Co: (Jagt	adhesiv Packaging)				
Adhesive & Type	Viscosity (Pa.s)	cosity Potlife Glass (a.s) For the transition		Volume Resistivity Ωcm	Shear strength (MPa)	Curing time (min.)	Curing Temp. (°C)
ICA 1 (1 comp.)	ICA 1 65 3 days 80 (1 comp.)		2.10-4 11		10-15	130-150	
ICA 2 (2 comp.)	CA 2 25-35 3-4 days 85 comp.)		1-4.10-4	10	30	130-140	
ICA 3 (2 comp.)	50	2 days	50	2-4.10-5	8	90	130-140
ICA 4 (1 comp.)	.4 160-200 4 days 80		80	5.10-3	5	20-30	120-130
ICA 5 (1 comp.)	310-350	4 days	80	1.10-3	4	20-30	120-130
ICA 6 (2 comp.)	150-200	8-12 hr	75	2-5.10-4	14	10-15	170-180
Compa Compa James J	re intrinsic e.g. Polya re Ag: ρ _{Ag} ^{E. Morris OSU S}	cally condu niline: ρ = = 1.6 x 10	ucting poly = 10 ⁵ (intri) ⁻⁶ Ω.cm; ρ	(mers, nsic) to 10^{-2} $p_{ICA} = 12.5$ to	Ω.cm (do o 312.5 x _j	oped) P _{Ag}	5/7/2012

Results – Optimal Coefficient Sets											
	Model	E ₁	A ₁	n	m	E ₂	A ₂	y 1			
ſ	1 st order	37882	1021.64	1	-	-	-	-			
ſ	2 nd order	35917	630.83	2	-	-	-	-			
	3 rd order	38364	841.82	3	-	-	-	-			
	Single step auto	31017	711.40	1.536	1.118	-	-	-			
	Double step auto	37039	666.04	0.767	3.958	309930	854.81	-			
	Modified double	33983	1074.40	1.326	1.115	-	-	0.0393			
4											

