

A Fault-Tolerant Alternative to Lockstep Triple Modular Redundancy

portuged state university

Andrew L. Baldwin, BS '09, MS '12 W. Robert Daasch, Professor Integrated Circuits Design and Test Laboratory

Problem Statement

- In a fault tolerant system containing three redundant processing mitigate the effects of a single faulty PE.
- When more than one PE is faulty Triple Modular Redundancy can select a faulty output.
- Time distributed voting (TDV) proposes an alternative to TMR to extend fault coverage when multiple PE's are faulty.

Outline

- Contributions
- Background
- Methods: Time Distributed Voting (TDV)
- Results
- Conclusion and Recommendations

Contributions

- Time Distributed Voting (TDV) extends coverage in active fault tolerant systems
- CAM based Verilog HDL TDV prototype:
 - Finds voting opportunities by detecting data stream commonalities
 - Aligns PE result for voting execution
- Characterization of aliasing in the ISCAS '85 C6288 benchmark

Background - Faults

- A fault is any upset that modifies a circuit to the point of failure.
- Faults may be caused by:
 - Random Defects Introduced during fabrication.
 May be detectable at test or latent
 - Soft errors occur online, may be recovered or reset
 - Hard errors occur online, may cause permanent damage to the circuit

IC Design & Test Laboratory Random Defects

Defects failures may be detectable at test

- As minimum feature size gets smaller, the circuit becomes sensitive to smaller defects.
- Smaller defects occur at a greater frequency.
- A .25um defect will occur 8 times more frequently than a .5um defect. $\frac{1}{2}$
- Relative frequency approximation.^{x³}

May fail during the product's useful lifetime.

0.4

16 April 2012

Defect size x (µm)

0.5

0.6

Relative frequency

0.0

Xo 0.3

0.7

Online Soft and Hard Errors

- Soft Errors
 - A change to the state of a device or transient
 - Caused by a heavy ionizing particle, cosmic ray, proton, etc.
 - No permanent damage, recovered by reset

- Hard Errors
 - Burnout
 - Latch up
 - Electro Migration
 - Permanently damages the device

Fault Mitigation

- Manufacturers employ techniques to improve yield and reliability in the presence of faults.
- Fault tolerant designs may preserve the functionality of the system when a component fails.
- Passive fault tolerance: masking erroneous results while leaving the faulty circuit in the system
- Active fault tolerance: identifies faulty circuits and removes or replaces them in the system
- Triple modular redundancy (TMR) is a passive fault tolerant technique

Triple Modular Redundancy (TMR)

- Three redundant processing elements operate same input
- PE results are evaluated in a voting algorithm
 - Majority result is the system output
- Any single erroneous result masked by the majority result

Shortcomings of TMR

- Additional area and power is required for redundant PE's and voting logic
- TMR provides coverage for cases as they arise
- TMR only provides reliable coverage when, at most, only a single PE is faulty
 - What happens when two PE's are faulty?
 - Can we identify the fault free PE using random inputs?

Fault Cones and Aliasing

- A fault's cone is all output bits affected by the fault
- Fault cones f2 and f3 can overlap
- Aliasing possible when input activates both faults
- Aliasing is faulty PEs agreeing to wrong result

Majority Voting

- Majority voting systems with multiple faulty PE's generate:
 - Indeterminate outcomes no PE results match
 - Cases with no majority, or the majority is wrong.
- Faulty PE's correct results vote with healthy PEs
- When PEs contain different faults, majority voting may still favor the healthy (Golden) PEs
- TMR systems assume single fault
 - Eliminates potential for indeterminate (null) voting
 - Eliminates potential aliased voting

Example Fault Cones and Aliasing

f1 activated	f2 activated	f3 activated	Bit-level voter	Word-level Voter	Comment
0	0	por	no fault observed	no fault observed	4
0	0	1	f3 observed f3 observed		
0	1	0	f2 observed	f2 observed	
0	1	1	possible aliasing on o5	possible word aliasing	f2 and f3 overlap
1	0	0	f1 observed f1 observed		
1	0	1	no bit level aliasing	indeterminate	f1 and f3 no overlap
1	1	0	no bit level aliasing	indeterminate	f1 and f2 no overlap
1	1	1	possible aliasing on o5	indeterminate	

Time Distributed Voting TDV

- A statistical opportunity exists for faulty PEs to help identify healthy PE's by accumulating voting results over time
- TDV identifies healthy and faulty PE's over time
 - Alternative to TMR masking erroneous results
 - If fault is not activated PE output is correct
 - When fault is activated not all PE output incorrect

TDV Prototype

- Verilog HDL prototype was used to simulate TDV
- Features:
 - Three PE's operating on independent data streams
 - CAM-based FIFO's to detect voting opportunities
 - PE result alignment and vote execution

ססרדבקתל שדקדב טתועברשודע

♣

TDV Block Diagram

TDV Processing Element (C6288)

- The ISCAS '85 C6288 Benchmark is used as the prototype processing element
- 15 by 16 array structure.
- 16-bit Multiplier (32 input bits, 32 output bits)
- C6288 contains 2448 nodes that may be modeled as SA0 or SA1 faults. Total 4896 fault nodes. (4879 observable)
- Minimum set size of 12 patterns to achieve 100% fault coverage (observable faults)
- 150 Pseudorandom patterns to achieve 100% fault coverage (observable faults)

C6288 PE

C6288 PE (continued)

- C6288 symmetry high rate of aliasing
 - C6288 AND gates compute partial products
- C6288 half and full adders sum partial products

A0 *B*0

A0 P0

Adders used in C6288

- Top-row half adders lack the Ci input
- Single half adder in the bottom row lacks the B input

Results: Coverage of Single Stuck-at Faults

- Simulated 1,200 pseudorandom test patterns for each of the 4,896 fault nodes
- Achieved 100% single stuck-at fault coverage with 150 pseudorandom input patterns.

Results: Aliasing Characterization

Random	Activated	Unactivated	Non-Aliasing	Aliasing	Aliasing
Patterns	Faults	Faults	Faults	Faults	Faults (%)
2	3,302	1,577	14	3,288	99.58%
3	3,974	905	28	3,946	99.30%
6	4,481	398	34	4,447	99.24%
12	4,768	111	34	4,734	99.29%
25	4,821	58	28	4,793	99.42%
50	4,874	5	28	4,846	99.43%
100	4,877	2	28	4,849	99.43%
200	4,879	0	28	4,851	99.43%
400	4,879	0	28	4,851	99.43%
800	4,879	0	28	4,851	99.43%
1,200	4,879	0	28	4,851	99.43%

- All fault pairs simulated for the N= 4,878 faults
- N(N-1)/2 = 11,982,960 fault pairs
- 99+% of faults in the array have aliasing fault pairs
 - 28 faults displayed no aliasing

Results: Aliasing Characterization

 Aliasing was observed in about 3.2% of all activated fault combinations

Random Patterns	Activated Fault Combinations	Aliasing Fault Combinations	Aliasing Fault Combinations(%)
2	5449951	96361	1.77%
3	7894351	145437	1.84%
6	10037440	205827	2.05%
12	11364528	276495	2.43%
25	11618610	317298	2.73%
50	11875501	353489	2.98%
100	11890126	369431	3.11%
200	11899881	377027	3.17%
400	11899881	378817	3.18%
800	11899881	379375	3.19%
1200	11899881	379437	3.19%

IC Design & Test Laboratory

9.5857

9.4001

5.6071

3.9373

3.1128

2.1439

1.2781

0.5154

0.0466

0.0206

3.224832

1.637596

0.023512

3.270927

3.178738

4851

6.947

maximum

quartile

median

quartile

minimum

Results: Aliasing Characterization

╞	-	$+\Box$	0]—		•				 $\left\ \right\ $	
											_
										-	
											-
										-	_
								 _	_		_

Percentage of 4,878 fault combinations that alias (4851 singular faults)

- On average a singular fault aliases with ~3.2% of it's possible fault combinations
- At most, a singular fault aliases with ~9.6% of it's possible fault combinations

Ν

Quantiles

100.00%

99.50%

97.50%

90.00%

75.00%

50.00%

25.00%

10.00%

2.50%

0.50%

0.00%

Moments

Std Dev

Std Err Mean

Upper 95% Mean

Lower 95% Mean

Mean

Results: Aliasing Characterization

- Equivalent faults modify the circuit in the same way
 - Display identical symptoms
- Red faults are equivalent
- Equivalent faults ~15,000 of aliasing fault pairs
- Aliasing extends equivalent faults

IC Design & Test Laboratory

PO

Results: Aliasing Characterization

Ρ9

- In the C6288, aliasing frequency is modulated by propagation paths and fault pair proximity.
- Propagation paths Faults that propagate through both adder outputs alias more than faults that only propagate through a single adder output.
- Proximity Aliasing is only observed for fault pairs in the same or adjacent column.
- Equivalence is not required.

- A singular fault (blue) may alias with faults in close columnar proximity (red)
- All aliasing fault pairs are in the same or adjacent column (pawn movement)

- TDV simulation assumes a single healthy (Golden) PE and two faulty (Faulty1 & Faulty2) PE's
- For each pseudorandom input pattern, the PE weights are updated as shown in the table below. (Minority PE weight gets decremented, Majority PE weights get incremented)
- TDV voting is non-biased, the outcomes are not skewed to favor the Golden PE
- The voter does not know what the correct answer is
- The object of is to identify the Golden PE using the accumulated TDV outcomes

Input Pattern	Result[0]	Result[1]	Result[2]	Weight[0]	Weight[1]	Weight[2]
А	Х	Х	Х	+0	+0	+0
А	Y	Х	Х	-1	+1	+1
А	Х	Y	Х	+1	-1	+1
А	Х	Х	Y	+1	+1	-1
А	Х	Y	Z	+0	+0	+0

IC Design & Test Laboratory

- Adding more test patterns changes the snapshot of which aliasing faults get coverage.
- The table shows the TDV outcome incrementally as input pattern set size is increased to 1,200 (Green=Correct; Red=Incorrect)

	PE1	PE2	PE3	200 Patterns	400 Patterns	800 Patterns	1200 Patterns
	Golden	N997	N2263	0	0	0	1
	Golden	N4297	N4796	0	0	1	0
	Golden	N752	N2514	0	0	1	1
1	Golden	N411	N3247	0	1	0	0
Ľ,	Golden	N1000	N2759	0	1	0	1
1	Golden	N997	N2008	0	1	1	0
	Golden	N872	N1121	0	1	1	1
	Golden	N868	N1121	1	0	0	0
	Golden	N3162	N4676	1	0	0	1
	Golden	N1823	N2577	1	0	1	0
	Golden	N3508	N4513	1	0	1	1
	Golden	N843	N3362	1	1	0	0
	Golden	N3745	N4760	1	1	0	1
	Golden	N435	N2694	1	1	1	0

Random Patterns	Total Fault Pairs	% Correct No-Aliasing Pairs	% Aliasing Pairs	% Correct Aliasing Pairs	% Total Correct Pairs	% Incorrect Aliasing Pairs
200	11,899,881	96.83%	3.17%	1.79%	98.62%	1.38%
400	11,899,881	96.82%	3.18%	1.80%	98.62%	1.38%
800	11,899,881	96.81%	3.19%	1.82%	98.63%	1.37%
1,200	11,899,881	96.81%	3.19%	1.83%	98.64%	1.36%

• For the C6288 array circuit

- TDV covers all observable single faulty PE cases covered by lockstep TMR.
- TDV extends fault coverage to 98.6% of multiple faulty PE's for which TMR provides no coverage.

Conclusions and Recommendations

- Lockstep TMR can fail in the presence of multiple faulty PE's.
- Time distributed voting (TDV) is an alternative to lockstep TMR
- TDV extended coverage to 98.6% of multiple faulty PE's for.
- C6288 benchmark alias simulation TMR provides no coverage for 1.4% fault pairs

Conclusions and Recommendations

- Aliasing extends beyond equivalent faults
- Conventional fault collapsing does eliminate fault pair aliasing
- TDV does not ensure detection of faulty elements in all cases.
- TDV evicted the healthy PE 3.2% of the fault pairs
- TDV requires analysis of frequency of aliasing fault pairs
- TDV may require engineered test patterns to maximize coverage.

Conclusions and Recommendations

- TDV provides effective alternative to lockstep TMR
- TDV provides fault tolerant design of systems in the presence of multiple faults.
- Adding PE's reduces aliasing faulty PE's
- Aliasing reduced from PE's with different implementation for same function
- Engineering a minimal test pattern to identify alias fault pairs

Acknowledgement

- Andrew Baldwin was a part-time graduate student
- The work described in this talk was his MS thesis

