
Design of 3D-Specific SystemsDesign of 3D-Specific Systems

Paul Franzon
North Carolina State University

Raleigh, NC

paulf@ncsu.edu
919.515.7351



2

IEEE CPMT SocietyIEEE CPMT Society



3

History of Integration History of Integration 

Fairchild

1960 2010

Integrated 
Circuit

Printed 
Circuit 
Board

Trilogy

Wafer Scale 
Integration

Multichip 
Modules

3DIC with TSV

Tezzaron



4

History of Integration History of Integration 

1960 2010

?Icreased Performance/Price Faster than 
Alternative Technologies

How much? >~ 25%
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OutlineOutline

 Overview of the Vectors in 3D Product Design

 Short term – find the low-hanging fruit

 Medium term – Logic on logic, memory on logic

 Long term – Extreme Scaling; Heterogeneous integration; 
Miniaturization

 Overcoming Barriers to Employment

Technology
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Future 3DIC Product SpaceFuture 3DIC Product Space

Interposer

Server Memory

3D Mobile Sensor Node

“Extreme” 3D 
Integration

Time

Image sensor

3D Processor

Heterogeneous
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3DIC Technology Set3DIC Technology Set

Bulk Silicon TSVs and bumps
(25 - 40 m pitch)

Face to face microbumps
(1 - 30 m pitch)

Tezzaron

CTSV ~ 30 fF
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… 3DIC Technology Set… 3DIC Technology Set

TSVs in an SOI process

Oxide Bond 
Interface

Tier-2

Tier-1

Tier-3 3D
Via

3D
Via

Transistor Layers

Tier-1 Transistor Layer 20 m

RF Back Metal

Cvia ~ 0.4 fF

MIT Lincoln Labs
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3DIC Technology Set3DIC Technology Set

 Interposers: Thin film or 65/90 nm BEOL 

 Assembly : Chip to Wafer or Wafer to wafer
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Value PropositionsValue Propositions

Fundamentally, 3DIC permits:

 Shorter wires
 consuming less power, and costing less
 The memory interface is the biggest source of 

large wire bundles

 Heterogeneous integration
 Each layer is different!
 Giving fundamental performance and cost 

advantages, particularly if high interconnectivity 
is advantageous

 Consolidated “super chips”
 Reducing packaging overhead
 Enabling integrated microsystems
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The Demand for Memory BandwidthThe Demand for Memory Bandwidth

Computing

Similar demands in Networking and Graphics

Ideal:  1 TB / 1 TBps memory stack
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Memory on LogicMemory on Logic

Conventional TSV Enabled

nVidea

or

x32
to
x128

or

N x 128
“wide I/O”

Less Overhead

Flexible bank access

Less interface power
3.2 GHz @ >10 pJ/bit
 1 GHz @ 0.3 pJ/bit 

Flexible architecture

Short on-chip wires

Processor

Mobile
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Mobile GraphicsMobile Graphics

 Problem:  Want more graphics capacity but total power is 
constrained

 Solution: Trade power in memory interface with power to 
spend on computation

POP with LPDDR2 TSV Enabled

LPDDR2

GPU

TSV IO

GPU

532 M triangles/s 695 M triangles/s

Won Ha Choi

Power 
Consumption

Power 
Consumption
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Dark SiliconDark Silicon

 Performance per unit power
 Systems increasingly limited by power consumption, not number 

of transistors
  “Dark Silicon” : Most of the chip will be OFF to meet thermal 

limits
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Energy per OperationEnergy per Operation
DDR3 4.8 nJ/word

MIPS 64 core 400 pJ/cycle

45 nm 0.8 V FPU 38 pJ/Op

20 mV I/O 128 pJ/Word

(6
4 

bi
t w

or
ds

)

LPDDR2 512 pJ/Word

SERDES I/O 1.9 nJ/Word

On-chip/mm 7 pJ/Word
TSV I/O (ESD) 7 pJ/Word

TSV I/O (secondary ESD) 2 pJ/Word

Optimized DRAM core 128 pJ/word

11 nm 0.4 V core 200 pJ/op

1 cm / high-loss interposer 300 pJ/Word

Various Sources

0.4 V / low-loss interposer 45 pJ/Word



16

Synthetic Aperture Radar ProcessorSynthetic Aperture Radar Processor

 Built FFT in Lincoln Labs 3D Process

Metric Undivided Divided %
Bandwidth (GBps) 13.4 128.4 +854.9
Energy Per Write(pJ) 14.48 6.142 -57.6
Energy Per Read (pJ) 68.205 26.718 -60.8
Memory Pins (#) 150 2272 +1414.7
Total Area (mm2) 23.4 26.7 +16.8%

Thor Thorolfsson
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3D FFT Floorplan3D FFT Floorplan

 All communications is vertical

 Support multiple small memories 
WITHOUT an interconnect penalty
 AND Gives 60% memory power savings

Thor Thorolfsson
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RePartition FFT to Exploit LocalityRePartition FFT to Exploit Locality

 Every partition is a PE

 Every unique intersection is a memory
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2DIC vs. 3DIC Implementation2DIC vs. 3DIC Implementation

vs.

Metric 2D 3D Change
Total Area (mm2) 31.36 23.4 -25.3%
Total Wire Length (m) 19.107 8.238 -56.9%
Max Speed (Mhz) 63.7 79.4 +24.6%
Power @  63.7MHz (mW) 340.0 324.9 -4.4%
FFT Logic Energy (µJ) 3.552 3.366 -5.2%

Thor Thorolfsson



23

Increasing the ReturnIncreasing the Return

1. 3D specific architectures

2. Exploiting Heterogeneity

3. Ultra 3D Scaling

High Performance
Low Power/Accelerato
Specialized RAM
General RAM
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Extreme IntegrationExtreme Integration

Motivation:  Database Servers; High End DSP
Deliver power at high voltage

Aggressive Cooling

Test and yield 
management

Power reduction 
through 3D 
architectures

Scalable 
interconnect 
fabric

High Capacity 
Memory 
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3D Miniaturization3D Miniaturization

Miniature Sensors
 mm3 scale - Human Implantable (with Jan 

Rabaey, UC(B))
 cm3 scale - Food Safety & Agriculture (with 

KP Sandeep, NCSU)

 Problems:
 Power harvesting @ any angle (mm-scale)
 Local power management (cm scale)

Peter Gadfort, Akalu Lentiro, Steve Lipa
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“True” 3D Integration

 Orientation of mm-scale sensor will be random
 Building antenna “through” 3DIC chip stack on edge 

will be very lossy
 Need power harvesting on all 3 sides
 Developed packaging integration flow to achieve this

Peter Gadfort
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Mid-term Barriers to DeploymentMid-term Barriers to Deployment

Barrier Solutions
Thermal Early System Codesign of floorplan and 

thermal evaluation
DRAM thermal isolation

Test Specialized test port & test flow
Codesign “Pathfinding” in SystemC

CAD Interchange Standards
Cost & Yield Supporting low manufacturing cost through 

design
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Technologies for Thermal IsolationTechnologies for Thermal Isolation

 Introduce thermal isolation material between CPU and DRAM

 Use inductive coupling for communications

CPU
Inductor
SiO2
Aerogel
SiO2
Inductor

DRAMs

Chip 1 Chip 2

Coupled
Inductors

Transmitter Receiver

Interconnec
t

DRAM surface 50oC cooler than SOC 

vs. Only 9oC cooler with 
direct attachment 

Ming Li, John Wilson, Neil DiSpigna

105oC

85oC
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Thermal and Physical Flow:Thermal and Physical Flow:
Comprehensive 
technology file

Composite 
technology file

WireX:
Thermal 
Extractor

Textual  Floor 
plan

Power 

PETSC:
Sparse Matrix 

Solver

Thermal MNAM Power vector

Static Thermal Profile

Transient 
Simulator

e.g. 
HSPICE/fREEDA

Hotspot only

Transient Thermal Profile

Resolution of 
simulation: Grid 

Size

Shivam Priyadashi
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Pathfinder 3D:Pathfinder 3D:
 Goals:

 Electronic System Level (ESL) codesign for fast investigation of 
performance, logic, power delivery, and thermal tradeoffs

 Focus to date:  Thermal/speed tradeoffs – static and transient

 Test case : Stacking of Heterogeneous Cores

4 wide L2

4 wide L2

2 wide L2

4 wide L2

4 wideL2

2 wide L2

Heat Sink Heat Sink

Design (a) Design (b)

Cross section view

Shivam Priyadarshi
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Long-term Barriers to DeploymentLong-term Barriers to Deployment

Barrier Solutions
Thermal & Power 
Deliver

3D specific temperature 
management
New structures and architectures for 
power delivery

Test & Yield 
management

Modular, scalable test and repair

Co-implementation Support for Modularity and 
Scalability

Cost & Yield Supporting low manufacturing cost 
through design
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3D Specific Interface IP3D Specific Interface IP

Proposal:

Open Source IP for 3D and 2.5D interfaces

An interface specification that supports signaling, timing, power 
delivery, and thermal control within a 3D chip-stack, 2.5D 
(interposer) structure and SIP solutions

3DIC
Bus IP

Circuits

CAD 
Interchange 
Formats

Constraint
Resolution

(Proc. 3DIC 2011)
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ConclusionsConclusions

 Three dimensional integration offers potential to
 Deliver memory bandwidth power-effectively;
 Improve system power efficiency through 3D optimized codesign
 Enable new products through aggressive Heterogeneous 

Integration

 Main challenges in 3D integration (from design perspective)
 Effective early codesign to realize these advantages in workable 

solutions
 Managing cost and yield, including test and test escape
 Managing thermal, power and signal integrity while achieving 

performance goals
 Scaling and interface scaling
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