# MICROELECTRONIC CIRCUIT DESIGN THIRD EDITION 

by

## RICHARD C. JAEGER and TRAVIS N. BLALOCK

## Third Edition Errata - First Printing

## Text Corrections

Page 33 The first answer to the exercise at the bottom of the page should be 9.20 kohms.
Page 46 The units on the vertical axis of Fig. 2.4 should be $\mathrm{cm}^{-3}$.
Page 108 Exercise: $2.13 \mathrm{~mA}, 1.13 \mathrm{~mA},-1.27 \mathrm{~V}$

Page 117 Exercise: $0.912 \mathrm{~ms}, 19.7^{\circ}$
Page 118 Exercise at bottom: 0.994 V, 1.07 V
Page 172 Units in the equation near the bottom of the page should be $\mathrm{A} / \mathrm{V}^{2}$
Page 178 Third exercise (25.4 uA, 6.52 V )
Page 182 Exercise answer should be 83.2 uA
Page 186 Exercise ( $2.22 \mathrm{uA}, 2.96 \mathrm{mV}$ )
Page 192 Last exercise 127 GHz
Page 193 Near the end of the first sentence: $10^{5} \mathrm{~V} / \mathrm{cm}$
Page 217 Last answer in exercise -1.07 mA
Page 223 Exercise answers (b) $0.300 \mathrm{fA}, 5.26 \mathrm{aA},-0.305 \mathrm{fA}$

Page 237 The units on $D_{n}$ in the exercise are $\mathrm{cm}^{2} / \mathrm{s}$.

Page 240 First exercise - 1.24 uF
Page 250 Q-Point: (206 uA, 4.18 V)
Page 278 Fig. 6.3(a): Remove the labels and arrows indicating $\mathrm{NM}_{\mathrm{L}}$ and $\mathrm{NM}_{\mathrm{H}}$.
Page 302 Exercise; $I_{D D}=278 \mathrm{uA}$

Page 305 Given Data in Ex. 6.7: 0.20 mW
Page 306 In the figure, the voltages should be $V_{\text {DSS }}=0.20 \mathrm{~V} \quad \mathrm{~V}_{\text {DSL }}=3.10 \mathrm{~V}$
Page 321 Spice Results Table: $11000 \quad 132 \quad 64.400 \mid 11111 \quad 64.6$
Page 330 Exercise: 4.47 ns --> $4.97 \mathrm{~ns}, 3.84$ ns --> 2.84 ns
Page 358 Exercise: 1.27 V
Page $362 \mathrm{C}=0.75 \mathrm{pF}$ in the first exercise. $\mathrm{Tau}_{\mathrm{p}}=2.4 \times(2 \mathrm{pF} / 0.75 \mathrm{pF}) \times(2 / 1) /(8 / 1)=1.6 \mathrm{~ns}$ Also "delay of 1.6 ns " just above the equation. The delay in Fig. 7.13(b) is also 1.6 ns.

Page 362 In the second exercise: $(\mathrm{W} / \mathrm{L})_{\mathrm{P}}=78.8 / 1 \quad(\mathrm{~W} / \mathrm{L})_{\mathrm{N}}=31.5$

Page 380 Execise: $\mathrm{P}=12.5 \mathrm{~mW}$
Page 403 Second exercise: The substrates of the PMOS devices must also be connected to $\mathrm{V}_{\mathrm{DD}}$.
Page 411 Exercise: Fall time $=1.30$ ns.
Page 420 Exercise: $\mathrm{P}=1.0 \mathrm{~mW}$.
Page 424 Exercise: 3.00 V (3.66 V corresponds to an input of 5 V in Fig. 8.35(b).)
Page 454 Exercise: $-\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$

Page 456 The frequency used in the simulations is 2000 Hz , not 1000 Hz .
Page 461 Exercise answers $1.66 \mathrm{~ns}, 6.0$ pJ
Page 464 Second line in Section 9.9.2 should refer to Eq. (5.30)
Page 466 First exercise: 6.00 --> 3.00
Page $469 \quad-5.49 \mathrm{~mA}$
Page 479 What is $\mathrm{i}_{\mathrm{L}}$ if $\mathrm{Q}_{4} \ldots$ Answers: 92.3 mA ; 9.16 mA ; no

Page $520 \quad\left(A_{v}\right)^{2}\left(R_{S}+R_{i n}\right) / R_{L}$

Page 531 The numerator coefficient should be $6 \times 10^{6}$.
Page 533 The numerator of the transfer function should be multiplied by "s". Answers $25.8 \mathrm{kHz}, 25.7 \mathrm{kHz}$
Page 549 Example 11.2: The gain of E1 should be negative, $-10^{9}$. Ignore the first two answers in the exercise.
Page 559 Third example: -18.0, 4.50 V, -92.1 uA
Page 573 In the figure, voltage gain block E1 is upside down, and its negative input should be connected to the output terminal. Also, Gain $=+10^{6}$.

Page 577 Sensitivity $=3 \mathrm{Q}-1=1.12$
Page $583 \quad \mathrm{Q}=0.471$

Page 587 First exercise: $V_{Z}>15.6 \mathrm{~V}$

Page $594 \mathrm{~T}_{\mathrm{r}}=13.0$ us

Page 617 44.2, 36.2, 4.20 (10.5 \%), -3.60 (-9.5 \%)
Page 626 Example 12.6: Known information: $\mathrm{A}=80 \mathrm{~dB}$

Page 645 Second denominator: $s+3.16 \pi \times 10^{4}$
Page $647 \quad 4190$ Hz
Page 656 SPICE Results: $\mathrm{R}_{\text {in }}=28.9 \times 10^{12}$ ohms
Page 673 First Exercise ( $1.45 \mathrm{~mA}, 3.57 \mathrm{~V}$ )
Page 692 The exercise is misplaced in the text and should refer to, and follow, Exercise 13.4. -130 should be -159, 222 should be -176 , and $42 \%$ should be $10 \%$.

Page 693 Ignore $\lambda=0.0133 / \mathrm{V}$.
Page 697 The second exercise should refer to capacitor $C_{2}$, and -145 should be -159 .

Page 700 VAF should be 75 V in the SPICE simulation. Both exercise should refer to $\mathrm{R}_{\mathrm{iC}}$, not $\mathrm{R}_{\text {out }}$. The exercise answers should be $\mathrm{R}_{\mathrm{iC}}=4.85$ Mohms $<6.28$ Mohms. $\left(\mathrm{R}_{\text {out }}=21.9\right.$ kohms ).

Page 70440.0 should be 41.5
Page 717 Second exercise: -12.5 $\rightarrow-24.4$
Page 725 The SPICE value of the input resistance should be 14.8 kohms, not 16.0 kohms.

Page 726 Example 13.10 - "with feedback bias" should be deleted
Page 734 In the second exercise, 9.5 V should be 4.5 V .
Page 761 Last exercise should refer to Fig.14.2. Answers: 78.1 kohms, 892 kohms
Page 766 In the equation at the top of the page, 116 kohms $\rightarrow 1.16$ Mohms twice.
Page 767 Exercise - Largest values of $\mathrm{v}_{\mathrm{i}} \ldots \quad 0.569 \mathrm{~V} \rightarrow 0.580 \mathrm{~V}$
Page 772 Ini Eq. (14.310, $\mathrm{R}_{4} \rightarrow \mathrm{R}_{6}$

Page 778 Second Exercise: 10.4, 5.04; Third exercise: $8.48<10.4 \ll 176,4.11<8.48<10.5$
Page $7960.579 \mathrm{uF} \rightarrow 6.8 \mathrm{uF}, 12.2 \mathrm{nf} \rightarrow 0.12 \mathrm{uF}, 6.13 \mathrm{nF} \rightarrow 0.068 \mathrm{uF} ; 0.232 \mathrm{uF} \rightarrow 2.2 \mathrm{uF}, 714 \mathrm{pf} \rightarrow 8200 \mathrm{pF}, 6.19 \mathrm{nF}$ $\rightarrow 0.068$ uF

Page $797795 \rightarrow 820 \mathrm{pF} ; 0.039 \rightarrow 0.042 \mathrm{uF}$
Page 803 The emitter arrow should point into the transistor in Fig. 14.33.
Page 808 Eq. (14.88), $\mathrm{V}_{\mathrm{P}}$ should be $\mathrm{V}_{\mathrm{TN}}$.

Page 811 Second exercise JFET $\rightarrow$ FET; Last exercise: -200, -50.0.
Page 820 Last exercise 1840 should be 1150
Page 842 SPICE results: $\mathrm{V}_{\mathrm{CE}}-\mathrm{V}_{\mathrm{BE}}=7.90 \mathrm{~V}$ and $\mathrm{BF}=116$
Page $851 \quad 5.20 \rightarrow 5.30$
Page 858 4.9 Gohm $\rightarrow$ 4.8 Gohm
Page $8939.34 \rightarrow$ 9.96; 200 uA $\rightarrow 189$ uA; 10.6 Mohm $\rightarrow$ 10.3 Mohm

Page 903 5.94 Mohm, 1.19 Mohm
Page 906224 ohm $\rightarrow 2.24$ kohm
Page $9321.25 \mathrm{~V} \rightarrow 1.37 \mathrm{~V}$
Page 938 SPICE Exercise Results: 64.164 uV, 0.520
Page $992 \quad C_{2}$ and $C_{3}$ are reversed in Fig. 16.4(c).

Page 995 At the top of the page, the results for $\omega_{\mathrm{Z} 2}$ and $\omega_{\mathrm{Z} 3}$ should be interchanged.

Page 996 First exercise "... if the value of $\mathrm{C}_{2}$ is reduced..."

Page 999 Second exercise answers: $33.6 \mathrm{~ms}, 1.47 \mathrm{~ms}, 14.3 \mathrm{~ms}, 124 \mathrm{~Hz}$

Pages 1021 \& 1030 Examples 16.6 and 16.7: $\mathrm{C}_{1}=\mathrm{C}_{2}=3.9 \mathrm{uF}, \mathrm{C}_{3}=0.082 \mathrm{uF}$

Page 1023 Second exercise: 445 MHz ; ignore the comment. Third exercise: -135, $837 \mathrm{kHz}, 525 \mathrm{MHz}$
Page 1031 Second exercise: -29.3, 6.70 MHz, 196 MHz

Page 1033 First exercise: 48.2, 18.7 MHz, 903 MHz
Page 1041 4.20 MHz $\rightarrow$ 6.27 MHz; ignore comment.
Page 1042 22.7 MHz $\rightarrow$ 11.6 MHz
Page 1043 Exercise: 159 kHz, 39.8 kHz; $C_{1}$ should be 0.01 uF in Fig. 16.52(b).

Page 1145, Eq. (17.142) The "s" term should be $\quad s\left[\left(C_{3}+C_{G D}\right) G+g_{m} C_{G D}\right]$
Page 1050 Second exercise: $29.6 \rightarrow 23.9,6.29 \rightarrow 5.07,296 \rightarrow 239$
Page 1052 First exercise: $4.59 \mathrm{MHz}, 093.3 \mathrm{kHz}, 49.2$, -80.2 . Ignore the comment at end. Second exercise: 4.59 MHz .
Page 1086 First exercise: +39.1 mS. Second exercise: -252 kohms, $-0.01 \mathrm{mS},-71.6$ kohms, 605 ohms, 863 ohms.
Page 1110 In the exercise, $R_{I}$ should be $R_{D}$.

Page 1122 Exercise: $27.6^{\circ} \rightarrow 69.4^{0}$
Page 1144 Exercises: 15.9 kHz

## Problem Statements

2.48 The second dimension in Fig. P2.48 should be $2 \mu \mathrm{~m}$, not $3 \mu \mathrm{~m}$
4.39 Page (c) should refer to Fig. P4.39(b).
$4.134 \quad V_{D S}=-5 \mathrm{~V}$
7.91 Use $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$
$8.23 \quad C_{B L}=500 \mathrm{fF}$
$11.10 \& 11.18 \quad \mathrm{~V}_{\mathrm{S}}$ should be $\mathrm{v}_{\mathrm{S}}$
11.69 3-kohms should be 3-kohms
$13.33 \quad \mathrm{R}_{\mathrm{S}}=1 \mathrm{kohms}$ and $\mathrm{R}_{4}=1 \mathrm{kohms}$
14.1 In Fig. 14.1(m), the power supply should be positive: $+\mathrm{V}_{\mathrm{DD}}$.
14.14 $V_{C C}=15 \mathrm{~V},-\mathrm{V}_{\mathrm{EE}}=-15 \mathrm{~V}$
$14.69 \quad \mathrm{C}_{3}=2.2 \mathrm{uF}$.
14.76 Ignore reference to $\mathrm{C}_{3}$.
$14.115 \quad C_{3}=2.2 u F$
$14.122 \mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}_{3}=1 \mathrm{uF}$.
15.96 Ignore the last sentence in the problem statement.
15.203 Problem should refer to Prob. 15.202.
$16.58 \quad \mathrm{~V}_{\mathrm{CC}}=+12 \mathrm{~V}$.
16.65 Problem should refer to Prob. 16.14(e).
16.83 $R_{L}$ is connected between the collectors of transistors $Q_{1}$ and $Q_{2}$.
17.104 The transistor parameters should be $K_{p}=1.25 \mathrm{~mA} / \mathrm{V}^{2}$ and $\mathrm{V}_{\mathrm{TN}}=-4 \mathrm{~V}$.
$17.108 R_{S}=820$ ohms, and the transistor parameters should be $K_{p}=1.25 \mathrm{~mA} / \mathrm{V}^{2}$ and $\mathrm{V}_{\mathrm{TN}}=-4 \mathrm{~V}$.

