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Figure 3.39 Simplified physical structure of the junction diode. (Actual geometries are given in Appendix A.)
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Figure 3.40 Two-dimensional representation of the silicon crystal. The circles represent the inner core of silicon atoms,
with +4 indicating its positive charge of +4q, which is neutralized by the charge of the four valence electrons. Observe how
the covalent bonds are formed by sharing of the valence electrons. At 0 K, all bonds are intact and no free electrons are

available for current conduction.
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Figure 3.41 At room temperature, some of the covalent bonds are broken by thermal ionization. Each broken bond gives
rise to a free electron and a hole, both of which become available for current conduction.
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Figure 3.42 A bar of intrinsic silicon (a) in which the hole concentration profile shown in (b) has been created along the x-axis
by some unspecified mechanism.
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Figure 3.43 Asilicon crystal doped by a pentavalent element. Each dopant atom donates a free electron and is thus called a
donor. The doped semiconductor becomes n type.
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Figure 3.44 Asilicon crystal doped with a trivalent impurity. Each dopant atom gives rise to a hole, and the
semiconductor becomes p type.
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Figure 3.45 (a) The pn junction with no applied voltage (open-circuited terminals). (b) The potential distribution along an
axis perpendicular to the junction.
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Figure 3.46 The pn junction excited by a constant-current source | in the reverse direction. To avoid breakdown, I is kept
smaller than I. Note that the depletion layer widens and the barrier voltage increases by V, volts, which appears between
the terminals as a reverse voltage.
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Figure 3.47 The charge stored on either side of the depletion layer as a function of the reverse voltage V.

Figure 3.48 The pn junction excited by a reverse-current source I, where | > I5. The junction breaks down, and a voltage V,,
with the polarity indicated, develops across the junction.
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Figure 3.49 The pn junction excited by a constant-current source supplying a current I in the forward direction. The depletion
layer narrows and the barrier voltage decreases by V volts, which appears as an external voltage in the forward direction.
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Figure 3.50 Minority-carrier distribution in a forward-biased pn junction. It is assumed that the p region is more heavily
doped than the n region; N, @ Np.
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Figure 3.51 The SPICE diode model.

Figure 3.52 Equivalent-circuit model used to simulate the zener diode in SPICE. Diode D, is ideal and can be
approximated in SPICE by using a very small value for n (say n = 0.01).




PARAMETERS:

C = 520u
R =191
Risolation = 100E6
Rload = 200 3 E.nl 6 ‘{E} 7
Rs = 0.5 L) AL
1 [Rs) 3 H DIN4148 = (C}
Lsl
Lp Zener_diode {Rload}

VOFF =0 Vsin
VAMPL = 169 4 )\

Rk DINAI4S &

E: [Risolation}
= 0 =0 =0

Figure 3.53 Capture schematic of the 5-V dc power supply in Example 3.10.
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Figure 3.54 The voltage v across the smoothing capacitor C and the voltage v,, across the load resistor Ry,,,= 200 Q in
the 5-V power supply of Example 3.10.
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Figure 3.55 The output-voltage waveform from the 5-V power supply (in Example 3.10) for various load resistances: R
=500 Q, 250 €, 200 ©, and 150 Q. The voltage regulation is lost at a load resistance of 150 Q.
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Figure E3.35 (a) Capture schematic of the voltage-doubler circuit (in Exercise 3.35).

10



T
Y i

Y

ViIN)

20V

v 1

SAVAVAVAVAVINAVAVAVAY

20V
Vi2y
o
V1
10V ¢ —
15V + \
T ———
0 Im 2m 3m 4m Sm fim Tm Bm 9m 10m
VIOUT)
Time (s}
by

Figure E3.35 (Continued) (b) Various voltage waveforms in the voltage-doubler circuit. The top graph displays the input
sine-wave voltage signal, the middle graph displays the voltage across diode D,, and the bottom graph displays the voltage

that appears at the output.
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