ECE32 1 ELECTRONICS I

FALL 2006
Professor James E. Morris

Lecture 12
$2^{\text {nd }}$ November, 2006
chapter 5

Bipolar Junction Transistors (BJTs)
5.3 Amplifiers \& Switches (Basic circuits)
5.4 DC Circuits (Biasing)

Figure 5.26 (a) Basic common-emitter amplifier circuit. (b) Transfer characteristic of the circuit in (a). The amplifier is biased at a point Q, and a small voltage signal v_{i} is superimposed on the dc bias voltage $V_{B E}$. The resulting output signal v_{o} appears superimposed on the dc collector voltage $V_{C E}$. The amplitude of v_{o} is larger than that of v_{i} by the voltage gain A_{v}.

Figure 5.27 Circuit whose operation is to be analyzed graphically

Figure 5.28 Graphical construction for the determination of the dc base current in the circuit of Fig. 5.27.

Figure 5.29 Graphical construction for determining the dc collector current I_{C} and the collector-to-emitter voltage $V_{C E}$ in the circuit of Fig. 5.27.

Figure 5.30 Graphical determination of the signal components $v_{b e}, i_{b}, i_{c}$, and $v_{c e}$ when a signal component v_{i} is superimposed on the dc voltage $V_{B B}$ (see Fig. 5.27).

Figure 5.31 Effect of bias-point location on allowable signal swing: Load-line A results in bias point Q_{A} with a corresponding $V_{C E}$ which is too close to $V_{C C}$ and thus limits the positive swing of $v_{C E}$. At the other extreme, load-line B results in an operating point too close to the saturation region, thus limiting the negative swing of $v_{C E}$.

Figure 5.32 A simple circuit used to illustrate the different modes of operation of the BJT.

Figure 5.35 Analysis of the circuit for Example 5.5. Note that the circled numbers indicate the order of the analysis steps.

(a)

(b)

(a)

(b)

Figure 5.37 Example 5.7: (a) circuit; (b) analysis with the steps indicated by circled numbers.

Figure for Exercise D5.27: $\beta=50$ to $150 \quad$ Find R_{C} for all circuits in active mode. Find V_{C} range for $\beta=50$ to 150 .

(a)

(b)

Fig. for Ex. 5.28

Example 5.10
calculates $\mathrm{I}_{\mathrm{C}}=1.28 \mathrm{~mA}$ for $\beta=100$
Recalculate for $\beta=50$
What is \% change?

(c)

(b)

(d)

Figure 5.40 Circuits for Example 5.10.

Figure for Exercise 5.29: Find total current from power supply and power dissipation in the circuit. (See Example 5.11)

(b)

Figure 5.41 Circuits for Example 5.11.

