1

Customer	Supplier/Vendor	
Loss of Product	Warranty claims	
Loss of product capability	Production downtime	
Production downtime	Test and repair cost	
Spare parts and maintenance	Diminished confidence and image	
Loss opportunities	Loss of future business	

Hazard Rate ("force of mortality") • The Hazard Rate is defined as the number of failures per unit time per number of operational parts left. $\lambda(t) = \frac{1}{n_s(t)} \frac{dn_f(t)}{dt} = \frac{1}{R(t)} \frac{dQ(t)}{dt} = \frac{-1}{R(t)} \frac{d[R(t)]}{dt} = \frac{f(t)}{R(t)}$ Note $\lambda(t) = [dn_f(t)/dt]/n_s \approx f(t) = [dn_f(t)/dt]/n_0$ if $n_s \approx n_0$ i.e. if few failures yet • Cumulative Hazard Rate: $H(t) = \int_0^t \lambda(t) = -\ln R(t)$ since R(0)=1• Mean Time to Failure (MTTF): $MTTF = \int_0^\infty t_s f(t) dt \Rightarrow \int_0^\infty R(t) dt \quad \text{if } R(t) \rightarrow 0 \text{ for } t \ll \infty.$

Reliability relationships, for $n_f(t)$ failed and $n_s(t)$ surviving at time t of an initial sample of n_0 .							
Function	Definition	General	2-parameter	Exponential	Rayleigh ($\beta=2$,		
			Weibull ($\gamma=0$)	(η=1, β=1)	k=2/η²)		
Probability density function f(t)	$\frac{1}{n_0} \frac{dn_f(t)}{dt}$	$\frac{dQ(t)}{dt} = -\frac{dR(t)}{dt}$	$\frac{\beta}{\eta} \left[\frac{t}{\eta} \right]^{\beta-1} \exp \left[- \left[\frac{t}{\eta} \right]^{\beta} \right]$	$\lambda_0.\exp(-\lambda_0 t)$	<i>kt.exp-¹</i> / ₂ <i>kt</i> ²		
Survivor function (reliability) R(t)	$\frac{n_s(t)}{n_0}$	$\int_{0}^{\infty} f(\tau) d\tau$	$exp - \left[\frac{t}{\eta}\right]^{\beta}$	e-302	$exp-\frac{1}{2}kt^{2}$		
Cumulative failure function (unreliability) Q(t)=1-R(t)=F(t)	$\frac{n_f(t)}{n_0}$	$\int_0^t f(t) dt$	$1^{-}axb - \left[\frac{a}{a-b}\right]_{b}$	1- Ø ^{=A} 2*	$1 - exp - \frac{1}{2}kt^2$		
Hazard rate $\lambda(t)$	$\frac{1}{n_s(t)}\frac{dn_f(t)}{dt}$	$\frac{-1}{R(t)}\frac{dR(t)}{dt} = \frac{f(t)}{R(t)}$	$\frac{\beta}{\eta} \left[\frac{t}{\eta} \right]^{\mu=1}$	ao	kt		
Cumulative hazard rate H(t)	$\int_0^{\tau} \lambda(\tau) d\tau$	$-\ln R(t)$	$\left[\frac{t}{\eta}\right]^{\beta}$	$\lambda_0 t$	kt ²		
Mean time to failure MTTF	$\int_0^\infty t.f(t)dt$	$\int_0^\infty R(t)dt,$		1/ Å ₀			
9					4/21/2009		

$$\frac{\text{Hazard Rate ("force of mortality")}}{\lambda(t) = \frac{1}{n_s(t)} \frac{dn_f(t)}{dt} \xrightarrow{(+n_0)}}{\sum_{i=1}^{(+n_0)} \frac{dQ(t)}{dt}} = -\frac{dR(t)}{dt} / R(t) \implies -\frac{\left(-\lambda_0 \exp^{-\lambda_0 t}\right)}{\exp^{-\lambda_0 t}} = \lambda_0$$
(Failure frequency at time t)

$$\frac{\text{Mean Time to Failure MTTF}}{MTTF = \int_0^\infty t.f(t)dt} \implies \int_0^\infty R(t)dt$$

$$= \frac{1}{\lambda_0} \exp\left(\frac{-\lambda_0}{t}\right) \int_0^\infty = \frac{1}{\lambda_0}$$
for exponential distribution
i.e. interpret Reliability $R(t) = \exp\left(\frac{-t}{MTTF}\right)$

$$421/2009$$

Effect of s	series cor	nplexity o	on system	<u>reliability</u>		
No. of Components	ents System reliability for individual component reliability					
III Series	99.999%	99.99%	99.90%	99.00%		
10	99.99%	99.90%	99.004%	90.44%		
100	99.90%	99.01%	90.48%	36.60%		
250	99.50%	99531%	77.87%	8.1%		
500	99.50%	99.12%	60.64%	0.66%		
1000	99.01%	99.48%	36.77%	0.004% 4/21/2009		

