

Table 3.1 Physical Properties of Carbon Nanotubes					
Parameter	Value and units	Observations			
Length of the unit vector	$a = \sqrt{3}a_{C-C} = 2.49$ Å	$a_{C-C} = 1.44$ Å is the carbon bond length			
Current density	>10 ⁹ A/cm ²	-1000 times larger than the current density in copper - Measured in MWCNTs			
Thermal conductivity	6600 W/mK	More thermally conductive than most crystals			
Young modulus	l Tpa	Many orders of magnitude stronger than the steel			
Mobility	10,000-50,000 cm ² V ⁻¹ s ⁻¹	Simulations indicate motilities beyond 100,000 cm ² V ⁻¹ s ⁻¹			
Mean free path	300-700 nm semiconducting CNT	- Measured at room temperature			
(ballistic transport)	1000-3000 nm metallic CNT	- At least three time larger than the best semiconducting heterostructures			
Conductance in	$G = 4e^2 / h = 155 \mu S;$				
ballistic transport	$1/G = 6.5 \mathrm{k}\Omega$				
Luttinger parameter g	0.22	The electrons are strongly correlated in CNTs			
Orbital magnetic moment	$0.7 \text{ meVT}^{-1} (d = 2.6 \text{ nm})$ 1.5 meVT $^{-1} (d = 5 \text{ nm})$	The orbital magnetic moment depends on the tube diameter			

CNT	Prop	erties	(Wikipedia)	CNT classi	fications:
	Young's Modulus (Tpa)	Tensile Strength (Gpa)	Elongation at break (%)		Single wall SWNT Multi-wall MWNT
SWNT	~1 (1-5)	13-53 ^E	16		Zigzag
Armchair	0.94 ^T	126.2 ^T	23.1		Chiral
Zigzag	0.94 ^T	94.5 ^T	15.6-17.5		Metallic Semiconducting
Chiral	0.92 ^T			CIMINITE	ture 3/ motellie 1/ comissional
MWNT	0.8-0.9 ^E	150		SWINTS:	Grow at ~ 900°C
Stainless steel	~0.2	~0.65-1.0	15-50	MWNTs:	Metallic Grow at ~ 700°C (→365°C)
Kevlar	~0.15 (0.25 ^T)	~3.5 (29.6 ^T)	~2	,	(1.1.11)
^T Theoretical ^E Experimental CTE ~ 0 Electrical (Metallic CNT): $I_{max CNT} > 1000 \times I_{max Ag/Cu}$ $_{4/21/20HyCNT} ~ 70 \times \mu_{Si}$ CNT "ropes" 10 ⁻⁴ Ω .cm				Nanotubes Diamond Metals Solders Polymers 1 Bulk	(Mallik)

	Table 2. M	echanical	properties of	the composit	e solders	doped with	nanotubes ar	id nano par	ticles.
Type of Additive SWCNT				Nickel Nano Particles			Nano Molyhdenum Particles		
Wt% of Additive	Hardness (MPa)	UTS (MPa)	Ductility	Hardness (MPa)	UTS (MPa)	Ductility	Hardness (MPa)	UTS (MPa)	Ductility
0	158.9	37.72	33. 32	158.9	37.72	33.32	158.9	37.72	3332
0.05	167.7	42.33	28.73	159. 9	38.65	33.12	1628	40.44	31.47
0.1	178.5	48.65	26.57	1608	40.56	32.18	165.7	43.81	29.13
0.5	181.4	51.23	23.84	1618	41.87	33.18	169.7	46.71	27.34
1	187. 3	56.74*	24.36	165. 7	4335	30.28	180.4	51.33	24.35
2				168.7	45.29	29.17	189.3	54.73	23. 26
2.3							1932	58.37	22.69
2.5							210.9	61.46	24.31
2.8							214.8	64.51*	21.18
3				174.6	47.91	2753	219.7	59.48	22.38
3.5				179.5	51.67*	26.18	2265	56.39	19.71
3.8				185.4	48.24	25.14			

