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Abstract: A review of polymer cure models used in microelectronics packaging applications reveals no clear 
consensus of the chemical rate constants for the cure reactions, or even of an effective model. The problem lies 
in the contrast between the actual cure process, which involves a sequence of distinct chemical reactions, and 
the models, which typically assume only one, (or two with some restrictions on the independence of their 
characteristic constants.) The standard techniques to determine the model parameters are based on differential 
scanning calorimetry (DSC), which cannot distinguish between the reactions, and hence yields results useful 
only under the same conditions, which completely misses the point of modeling. The obvious solution is for 
manufacturers to provide the modeling parameters, but failing that, an alternative experimental technique is 
required to determine individual reaction parameters, e.g. Fourier transform infra-red spectroscopy (FTIR).  

1. INTRODUCTION 

Thermally cured epoxies and other polymers are 
extensively used in electronics packaging, as 
encapsulants, underfills, and adhesives, etc. The 
project which prompted this study was the microwave 
cure of a carbon-loaded epoxy encapsulant [1]. The 
temperature rises more rapidly than in conventional 
isothermal or reflow oven curing systems, and the 
cure proceeds more uniformly within the material. 
Optimization of the microwave power level and 
application time cannot be readily accomplished 
experimentally, especially given the speed of the cure, 
so simulation is seen as the tool to sensible planning 
of the process development. A literature review was 
the obvious first step to establish the model, including 
the thermal dependences of the chemical reaction 
parameters. Prior experience had suggested that the 
basic first order model is effective in electrically 
conductive adhesive applications, based on rapid 
resistance decreases at the calculated 100% cure point, 
with model parameters relatively easily obtained by 
DSC measurements [2, 3]. However, the observation 
of such resistance decreases at barely 20% cure [4] 
calls this criterion into question.  

2. PHENOMENOLOGICAL CURE MODELS 

2.1. Mathematical Models 

For α = degree of cure, the basic assumption of all 
models is that the reaction rate can be expressed in 
terms of the temperature dependent chemical rate 
constant, K, and a function, f(α), of reactant 
concentration at absolute temperature, T, as 
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 Reaction rate parameters A and activation energy 
E are assumed to be characteristic constants of the 
polymer, and R=8.31J/K.mole. Cure models vary in 
the assumed form of f(α), as listed below:  

o nth order models:  f(α) = (1 - α)n           (2) 
In these cases, one can find α analytically for constant 
T, (i.e. isothermal cure) as: 
 1st order: dα/dt = K(1- α), ∴ α = 1-exp(-Kt) 

 2nd order: dα/dt = K(1- α)2, ∴ α = 1 – [1 + Kt]-1 
 nth  order: dα/dt = K(1- α)n,  

 ∴ α = 1 – [1 + (n - 1)Kt]-1/(n-1)  



o Auto-catalyzed models: 

 Single-step:      dα/dt=K αm (1- α)n               (3)   
 Double step (linear combination):                                                

dα/dt=(K1+K2 αm)(1- α)n                                   (4) 
 Modified double step:          

dα/dt=K(y1+y2 αm)(1- α)n      where y1+y2=1     (5) 

2.2. Physical Basis 

The nth order model (equation 2) is based on the 
simple notion that the reaction rate is proportional to 
the un-reacted reagent mass available. There is a 
theoretical basis for the values of n below for the 
reaction modes quoted [5], but n varies much more 
widely in practice.  

 n=1/2  Phase boundary reaction (area) 
 n=1/3 Phase boundary reaction (volume) 
 n=2/3 Nucleation sphere (volume growth) 

A branching nucleation/growth model supports the 
single step autocatalytic model (equation 3), where the 
dependence on α suggests that the reaction proceeds 
at the boundary of reacted and un-reacted material, 
e.g. activated by an exothermic reaction. Note, 
however, that dα/dt=0 for α=0, which is non-physical 
and leads to “starting” problems.  

The double-step auto-catalytic model (equation 4) is 
designed to solve this problem, but the single n-
exponent does not suggest two independent reactions. 
However, it is the only model with more than a single 
chemical rate constant, i.e. all others implicitly 
assume a single chemical curing reaction, or at least a 
single rate controlling reaction across the full 
temperature range of interest. (The modified double-
step (equation 5) provides two reaction rates, but with 
a single activation energy.)  

3. PHYSICAL MODEL 

3.1. Cure Reactions 

In practice, the cure of bisphenol-A diglycidyl 
ether (BADGE), for example, a commonly employed 
epoxy in packaging applications, requires two steps, 
(with a third etherification reaction only occurring at 
high cure temperatures.) So the double step auto-
catalyzed model is the only one of these with a 
realistic physical basis which can be expected to apply 
outside the conditions used to determine A, E.  

The two reactions [6-8] can be written as: 
I. Primary amine + epoxide → secondary amine 

II. Secondary amine + epoxide → tertiary amine 
where neither of these totally dominates rate control.  

At temperatures below the glass transition 
temperature, Tg, (which increases with degree of 
cure,) the cure rate is controlled by reagent diffusion 
[9], (effectively stopping the reaction,) so in general 
the effective cure rate is given by 

 

 

 

(6) 

4. CURE PARAMETER DETERMINATION 

To use the models, the rate parameters A and E 
must be determined, and to do so requires the 
assumption of the relevant model and the prior 
determination of the model parameters m and n, etc. 
There are mathematical techniques available to extract 
these from isothermal and/or dynamic DSC data, 
which are reviewed below.  

4.1. Differential Scanning Calorimetry (DSC) 

DSC monitors the heat flow into or out of the 
reaction chamber, i.e. the heat of reaction, as a 
function of time. For isothermal DSC, heat is provided 
or absorbed to maintain constant T. The sample size 
must be as small as possible to minimize thermal lag 
and the inevitable difference between sample and 
chamber temperatures during the reaction. 

The instantaneous rate of heat flow from the 
chamber (for an exothermic cure reaction) 
corresponds to the instantaneous reaction rate, dα/dt, 
and the area under the curve to the degree of cure, α, 
so both of these parameters are directly accessible [7, 
10]. Normalization of the total area to α = 1 is a usual 
first approximation, but can be improved by a second 
cure cycle which will indicate further curing and 
provide a second approximation (which can be further 
improved by successive cycles) of the first cycle’s 
degree of cure, α ≤ 1. 

Iterative techniques have been used to develop 
multi-reaction models from DSC peak detail [11].   
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4.2. Isothermal DSC 

For isothermal cure, there will be an initial period 
required to establish the constant cure temperature, T, 
which must exceed Tg. 

nth-order model: (Equation 2) 

(A) Equation 2 may be re-written as [12]: 

ln(dα/dt) = ln K + n ln(1- α)            (7) 

For multiple isothermal DSC experiments at various 
values of T, ln(dα/dt ) is plotted vs. ln(1- α) for each 
T to find n and K(T). (As a model check, n should be 
independent of T.) Then ln K(T) is plotted vs. 1/T 
(Arrhenius plot) to find E and A; the plot should be 
linear for E, A to be independent of  T, (i.e. for a 
single reaction.)  

(B) Alternatively, equation 2 is written as: 

ln[(dα/dt )/ (1- α)n] =  ln K(T)  = -E/RT+ ln A        (8) 

and ln[(dα/dt )/ (1- α)n]  is plotted vs. 1/T to yield E 
and A directly. However, this method requires one to 
assume a value of n, i.e. to vary n to obtain the linear 
Arhennius plot for E and A independent of T.  

(C) Independent determination of n [13]: If the slopes 
at the leading and trailing saddle-points of the dα/dt 
curves are designated by a and b respectively, then it 
has been shown theoretically and experimentally that 
n can be determined for the nth-order model only as 

n =  (a /0.63b )½             (9)  

Single-step autocatalytic: (Equation 3) 

Equation 3 is re-written as: 

ln (dα/dt)=ln K + m.ln(α) + n.ln(1- α)           (10) 

(A) For multiple isothermal DSC experiments at 
various values of T, plots of: 
• ln(dα/dt) vs. ln(α) for small α«1 give m, K(T) 
• ln(dα/dt) vs. ln(1-α)  for large α»0 give n, K(T) 

(Consistency of the K(T) values for each plot pair at 
each T provides a model check.) Plotting ln.K(T) vs. 
1/T gives E and A as before, from a linear graph. 

(B) If one assumes that m+n=2 [14], equation 3 
becomes 

dα/dt=K α2-n (1-α)n            (11) 

and plots of ln[(dα/dt)/α2] vs. ln(1/α -1) at each T 
give n (the slope) and K(T). E and A are found from 
the Arrhenius plot, as before. 

 (C) One can also plot (dα/dt)/(1- α)n  vs. αm directly 
at each T, varying n and m to obtain linear plots of 
slope K(T), and hence E and A.   

 Double-step autocatalytic: (Equation 4) 

(A) The double-step problem is that two independent 
temperature-dependent parameters must be found, a 
significant complication. The brute-force approach is 
to plot dα/dt vs. α for each isothermal T run, and to 
find the best fit, varying m, n, K1(T), and K2(T). Then 
plots of ln K1(T), ln K2(T), vs. 1/T give E1, E2, A1, A2. 
One set of results gave m~0.5-1, n~2 for α<0.3-0.5, 
while another yielded m~0.75, n~1.5-2.  

(B) If one assumes m=1, n=2, (which experiment 
supports over a limited range in some cases,) a plot of 
[(dα/dt)/(1- α)2] vs. α gives K1(T), and K2(T), and 
again the Arrhenius plots give E1, E2, A1, A2. 

(C) One might reduce the added complexity by 
elimination of one of the variables, e.g. at the reaction 
peak αp, where d2α/dt2 =0 gives: 

       K1=K2 αp
m-1[(m/n)- αp(1+m/n)], and hence 

     (dα/dt)αp / [αp
m(1- αp)n] =K2.(m/n).[αp

-1 - 1]  

which gives K2(T) and hence K1(T), although one 
must still find m and n by trial and error.  

Modified double-step autocatalytic: (Equation 5) 

(A) For the assumption that m=n=1 [15]: 

 

 

 

    

At the peak αp, (tp,) setting d(dα/dt )/dα = 0 gives 
 y1/y2 = 1 - 2αp 
and (substituting back) gives: Ktp = -ln(y1/y2),  
and hence:  ln tp=(E/R)/T+ln[-A-1 ln(y1/y2)]. 

(B) For the assumption that m=1, n=2: 

 

 

 

 
At the peak αp, setting d(dα/dt)/dα = 0 gives 

 y1/y2 = ½(1 - 3αp)   
and (substituting back) gives:  
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Kt=-½y2+y2ln[(1-y1/y2)/4 (y1/y2)3] 
and hence:  
ln tp=(E/R)/T+ln[y2A-1 {ln(1-y1/y2)/4 (y1/y2)3} -½] 

In both cases, (A and B,) plotting ln tp vs. 1/T for each 
isothermal T yields E and A. 

4.3. Dynamic DSC 

In dynamic DSC, the temperature is ramped 
linearly with time, t, so T = βt. Endothermic solvent 
evaporation and specific heat effects must both be 
removed by baseline correction, typically by a second 
run after cure. (There will be a specific heat 
discontinuity on this second run as T passes through 
Tg.) In addition, it is imperative that β be sufficient to 
maintain T>Tg throughout the process as Tg increases 
with cure, or the reaction may slow if Tg(t)~T(t) or 
stop while T(t)<Tg(t). 

nth-order model: (Equation 2) 

For two different heating rates β1≠ β2 [9]:-  

For the same degree of conversion α1=α2 at T1, T2 
ln[(dα/dt)1/(dα/dt)2] = -(E/R)[1/T1-1/T2] gives E 

And, at the same temperature T1=T2 
ln[(dα/dt)1/(dα/dt)2] = n.ln[(1-α1)/(1-α2)] gives n 

For the same rate of conversion (dα/dt)1=(dα/dt)2  
ln[(1-α1)/(1-α2)] = (E/nR) )[1/T1-1/T2] confirms E, n 

Iso-conversion: (Equations 2 and 3) 

For dα/dt = K f(α),  where K = A exp-(E/RT), T=βt : 
d2α/dt2=[(E/Rβt2)+A.f´(α).exp-E/Rβt](dα/dt),  
and at peak αp where dα/dt is maximum,  
d2α/dt2 = 0 when E/Rβtp

2=-A.f´(αp).exp-E/Rβtp , 
i.e. when Eβ/RTp

2=-A.f´(αp).exp-E/RTp ,  
or when ln(E/R)+ln(β/Tp

2) =ln(-A.f´(αp))- E/RTp [5],  
so plotting ln(β/Tp

2) vs 1/Tp gives E from the slope, 
i.e. E = R.[d.ln(β/Tp

2)/d.(1/Tp)] [12, 13, 16]. 

This method yields E independent of the specific 
model f(α), which is still needed, however, to then 
find A. With E known,                                              
A=- (RTp

2/Eβ.f´(αp))exp(E/RTp),             
and for the nth order model: f´(αp)=n(1 - α)n-1, which 
→1 for  n=1. For the single step auto-catalytic model, 
f´(αp)=f(α).[(m/α) + n/(1-α)]. 
Note: This method does not apply to the double-step 
auto-catalytic model, only for single-K models. 

 

Temperature integral method [17]:  

Re-writing equation 1 as: 

 

 

 

 

    

           (12) 

   

 

 

(A) There are many possible solutions for the RHS: 
p(x)=z-1E2(z), either by numerical integration by 
computer, or as series solutions [18]. Two of the most 
accurate approximations over appropriate ranges are: 
 

 
 
 
The expression log[p(x)] ≈ -2.315-0.4567E/RT (for 
20<E/RT<60) has been commonly used in the past 
[2,3] but is not as accurate. Rearranging equation 12: 
g(α)=(AE/βR)p(x) → lnβ=ln[AE/Rg(α)]+ln.p(E/RT), 
which gives (Ozawa) E=-(R/0.4567)[Δlogβ/ΔTX

-1] 
where the same degree of cure αX occurs at 
temperatures TX as thermal ramp rate β is varied. 

(B) Ideally, one needs a simple solution for: 

 

           (13) 

The RHS (thermal integral) is discussed above. Any 
expression for the LHS requires the assumption of a 
model f(α).  

For f(α)=(1- α), α = 1 - exp-[(AE/βR)p(x)] , and     
for f(α)=(1- α)n, α = 1 – [1-(n-1)(AE/βR)p(x)]-1/(n-1). 
For the auto-catalytic model f(α)= αm(1- α)n,  the 
singularity at α=0 means a generalized analytical 
integral  ∫0 from zero is not possible, but indefinite 
integrals can be found for specific practical m and n 
values [19]. 
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4.4 .Discussion 

Only the isothermal DSC scan can yield K1, K2, 
m, and n, (a) by plotting dα/dt versus α and varying 
the four parameters for best fit, or (b) by plotting 
dα/dt versus (1-α)2 with the assumption of m=1, n=2, 
(which seems to be supported by some data), or (c) 
finding K1 and K2 independently from DSC peak 
values, but with m, n assumptions still required. Note 
the uncertainty such procedures would necessarily 
leave. (Note that there is no obvious reason why n 
should be the same for both reactions.) Arhennius 
plots of K1, K2, then yield A1, A2, E1, and E2.  

4.5. Near Infrared FTIR and HPLC 

Fourier Transform Infrared (FTIR) Spectroscopy 
and High Performance Liquid Chromatography 
(HPLC) can both determine the concentrations of all 
the cure reagents directly at a given time, and as a 
function of temperature, which would provide direct 
tracking of all reactions involved in the cure process. 
The measurement time is a problem, since the 
measurements must be taken as a series of “snapshots” 
that are strung together to form a “movie.” These 
techniques have been shown to yield consistent 
measurements of α versus time [20-22]. 

5. EXPERIMENTAL RESULTS 

Some measurement results for model and rate 
parameters from various sources in the literature are 
provided below for the various models above, applied 
to varied polymers [23] and BADGE [7]. It is 
impossible, however, to cover the diversity of 
assumed and measured model parameters fully. 

o n-th order model:   
 f(α) = (1 - α)n (Eqn. 2)  
 n=0.2→2; typ. n=1→1.5, or n≈1 or n≈2  

o Single step auto-catalyzed model:  
 dα/dt=K f(α)=K αm (1- α)n (Eqn. 3) 
 Order m+n=2 [15] (or 3 [24, 25]); 

 typically m=n=1, or m~0.5→1 & n~1.5, 
 with m, n temperature dependent [14, 26].  

o Double step (linear combination):  
 dα/dt=(K1+K2αm)(1- α)n (Eqn. 4) 
 n~2, m=1-2; n ≈ 1.5, m≈0.75; m=1, n=2 [27];   
m~0.5-1, n~2 [28] 

 E1=73 & E2=60; E1=44 & E2=57 (kJ/mole)
 and see [29].   

o Modified double step:  
 dα/dt=K(y1+y2αm)(1- α)n (Eqn. 5) 
 E=240-243kJ/mole, A=5x1014,   

 y1=0.0215, y2=0.9785 (PEEK) [15] 

Overall, activation energies, E, range from 10 to 120 
kJ/mole [7, 30], and both these “effective” E values 
and A are temperature and/or α-dependent [8, 31], 
indicative of multiple reactions. In general, these 
results differ for isothermal and dynamic DSC 
experiments [31], and vary with dynamic DSC ramp 
rates [12, 32]. Correlations between m, n, and between 
E, A, suggest numerical model problems [23]. 

6. CONCLUSIONS 

The point of process modeling can be to verify 
theoretical understanding by matching to experiment, 
but here it is to predict process outcomes where 
experimental control is difficult. This study was 
conducted to assess the various cure models in use to 
determine the appropriate one for the microwave cure 
project. It is apparent, however, from a critical 
examination of these models in terms of the known 
chemical reactions that none is physically realistic.  
This view is supported by published model data for a 
variety of polymers where the single rate constant 
parameters, A and E, vary with temperature and/or 
degree of cure, making them applicable only within 
the range of measurement conditions, i.e. not useful as 
predictive tools. 

The obvious solution is for manufacturers to 
provide full and accurate modeling parameters in their 
material data sheets, specifically the rate parameters 
for the individual reactions. However, in the 
meantime, FTIR studies of the cure process have been 
shown to be capable of distinguishing between the 
successive reactions. It is proposed that FTIR replace 
DSC in the determination of cure model parameters, 
based on equation 8. 

6.1. Proposed Model 

The double step auto-catalyzed model (equation 
4) could conceivably then be modified as [11]: 

dα/dt = K1(1-α)n1 + K2 αm (1- α)n2                  ( 14)  



to separate the two reactions, with the αm term in the 
second representing the secondary amine 
concentration, i.e. assuming that there is negligible 
conversion of secondary amines to tertiary. A more 
realistic model proposed for the two-step reaction is 

 dα/dt = [K1(1-α1)m1 + K2 (α1-α2)m2] (1- α)n    (15)  

where [27] 
 α is re-defined as the fraction of reacted epoxide  
 (1-α) is therefore the remaining fraction of un-

reacted epoxide 
 α1 is the fraction of reacted primary amines  
 (1-α1) is therefore the remaining fraction of un-

reacted primary amines  
 α2 is the fraction of tertiary amines, i.e. the 

fraction of reacted secondary amines, and   
 (α1-α2) is therefore the fraction of un-reacted 

secondary amines 
Note that the sum of primary, secondary, and tertiary 
amine fractions, (1-α1) + (α1-α2) + α2 = 1, and that 
furthermore  

α.Cepoxide = (1+α2)α1.Cprimary          (16) 

where Cepoxide and Cprimary are the original epoxide and 
primary amine concentrations, which simplifies to  
α = (1 + α2)α1            (17) 
for stoichiometric mixtures. 

The added realism adds more parameters in m1 
and m2, α1 and α2. There is arguably no reason why n 
should be the same for both reactions, as noted above, 
and two separate values, n1 and n2, may be necessary, 
as in equation 7, at the cost of still greater complexity. 
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