

MAGNETIC FIELDS

Magnetic flux lines form closed paths that are close together where the field is strong and farther apart where the field is weak.

ELECTRICAL ENGINEERING: PRINCIPLES AND APPLICATIONS, Third Edition, by Allan R. Hambley, ©2005 Pearson Education, Inc.

$$I_{2\rm rms} = \frac{N_1}{N_2} I_{1\rm rms}$$

$$p_2(t) = p_1(t)$$
ELECTRICAL ENGINEERING: PRINCIPLES AND APPLICATIONS, Third Edition, by Allan R. Hambley, ©2005 Pearson Education, Inc.

Element Name	Symbol	Ideal	Real
Primary resistance	R_1	0	3.0 Ω
Secondary resistance	R_2	0	0.03 Ω
Primary leakage reactance	$X_1 = \omega L_1$	0	6.5 Ω
Secondary leakage reactance	$X_2 = \omega L_2$	0	0.07 Ω
Magnetizing reactance	$X_m = \omega L_m$	∞	15 kΩ
Core-loss resistance	R_c	∞	$100 \mathrm{k}\Omega$

