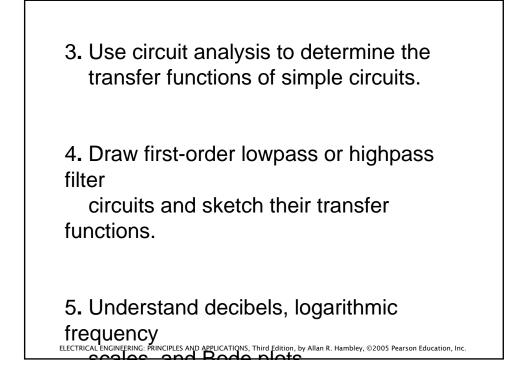
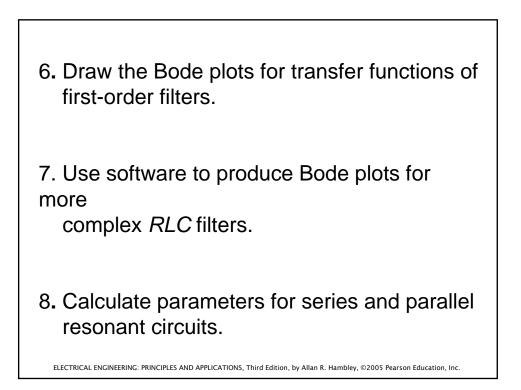
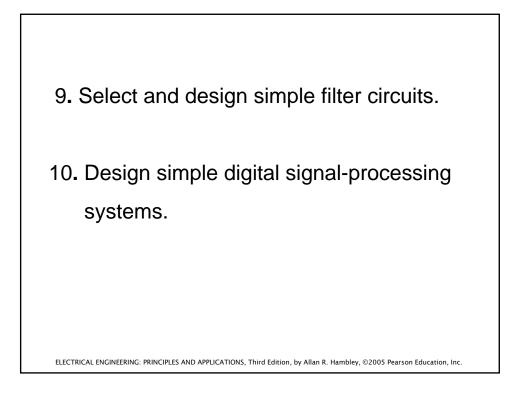


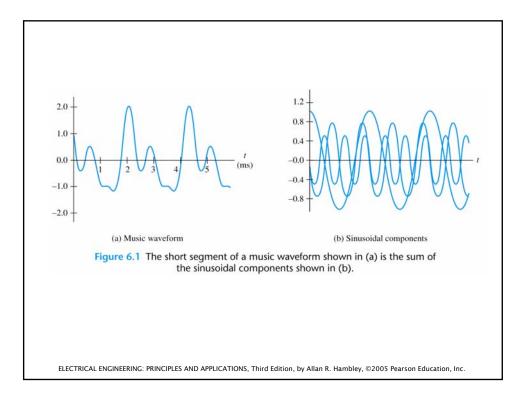
CHAPTER 6 Frequency Response, Bode Plots, and Resonance

- 1. State the fundamental concepts of Fourier analysis.
- 2. Determine the output of a filter for a given input consisting of sinusoidal components using the filter's transfer function.









All real-world signals are sums of sinusoidal components having various frequencies, amplitudes, and phases.

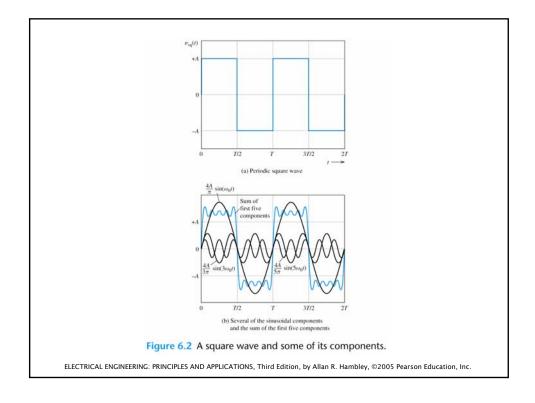
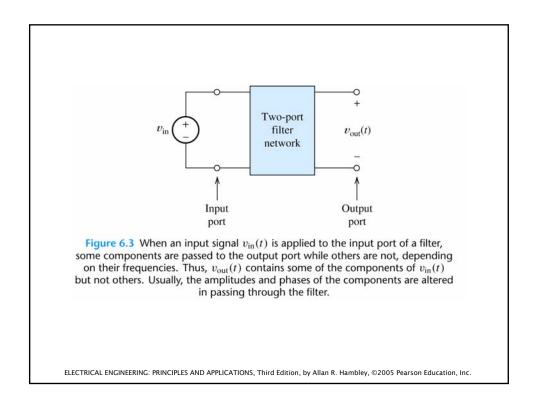


Table 6.1. Frequency Ranges of Selected Signals

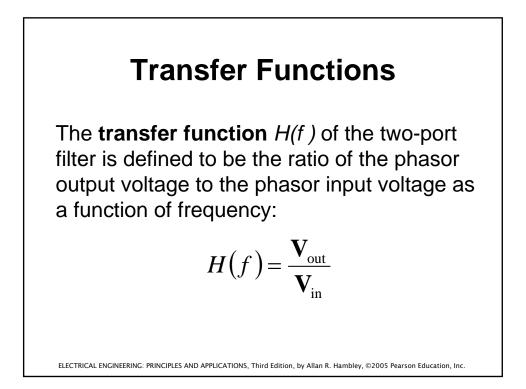
Electrocardiogram	0.05 to 100 Hz
Audible sounds	20 Hz to 15 kHz
AM radio broadcasting	540 to 1600 kHz
Video signals (U.S. standards)	Dc to 4.2 MHz
Channel 6 television	82 to 88 MHz
FM radio broadcasting	88 to 108 MHz
Cellular radio	824 to 891.5 MHz
Satellite television downlinks (C-band)	3.7 to 4.2 GHz
Digital satellite television	12.2 to 12.7 GHz

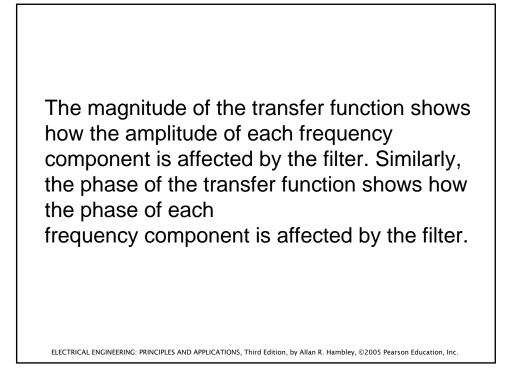


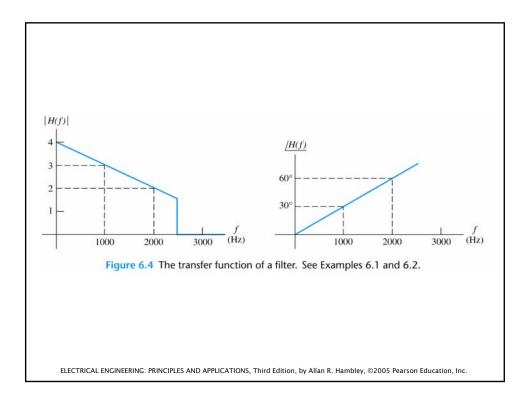
Filters

Filters process the sinusoid components of an input

signal differently depending of the frequency of each component. Often, the goal of the filter is to retain the components in certain frequency ranges and to reject components in other ranges.







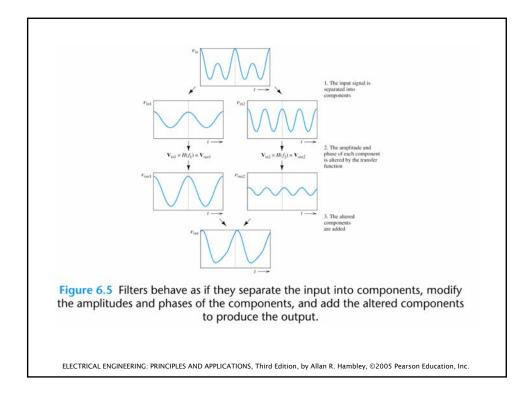
Determining the output of a filter for an input with multiple components:

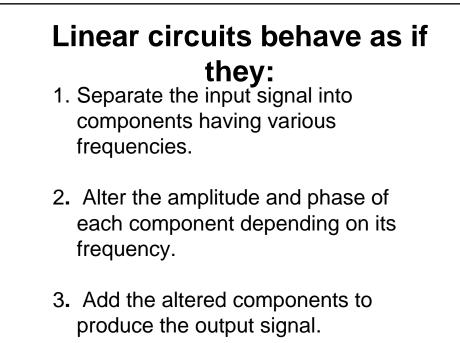
1. Determine the frequency and phasor representation for each input component.

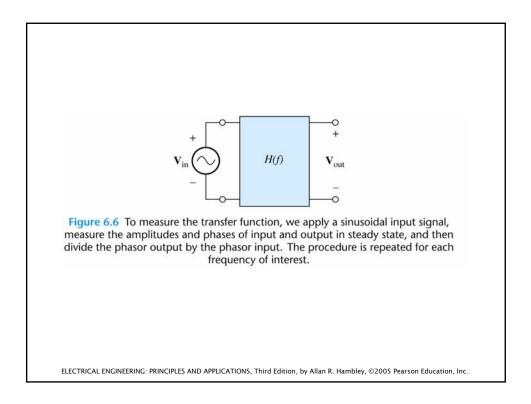
2. Determine the (complex) value of the transfer function for each component.

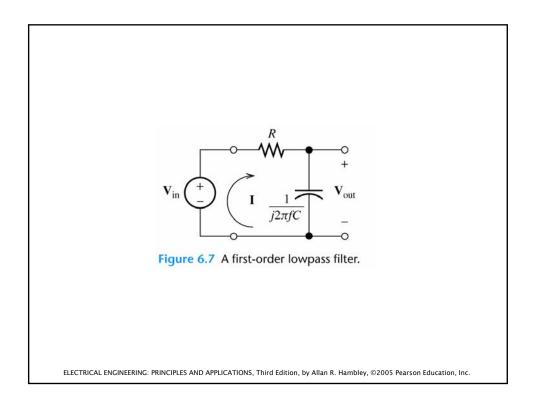
ELECTRICAL ENGINEERING: PRINCIPLES AND APPLICATIONS, Third Edition, by Allan R. Hambley, ©2005 Pearson Education, Inc

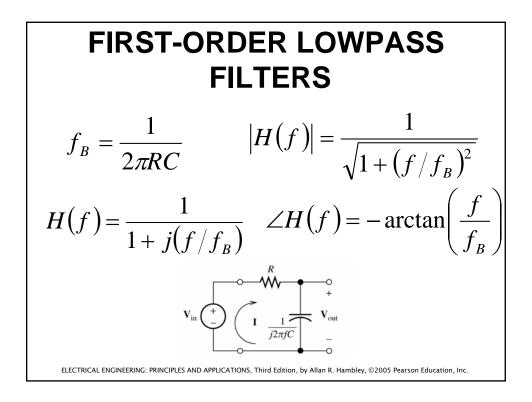
3. Obtain the phasor for each output component by multiplying the phasor for each input component by the corresponding transfer-function value.
4. Convert the phasors for the output components into time functions of various frequencies. Add these time functions to produce the output.

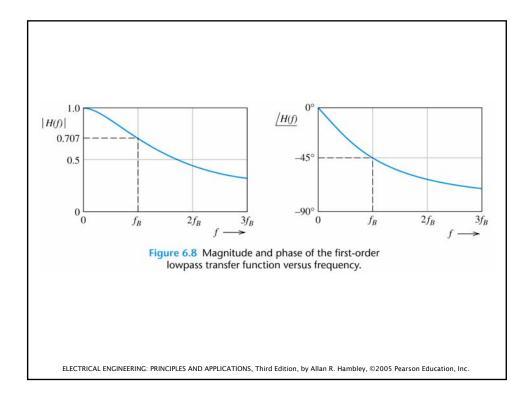


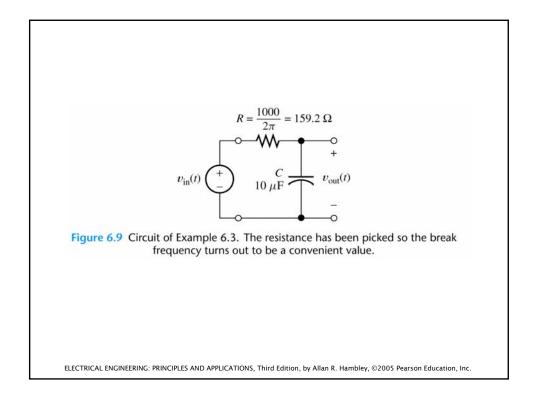


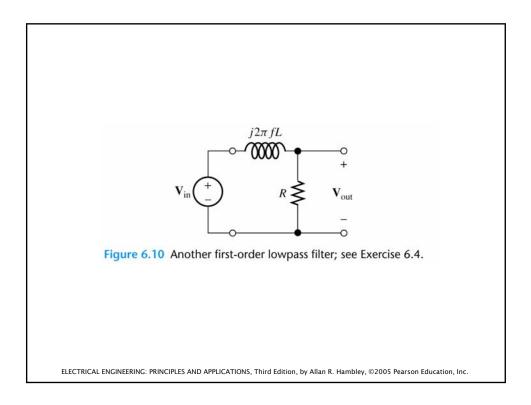


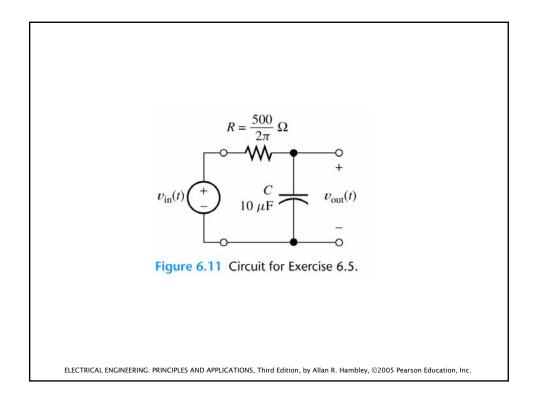


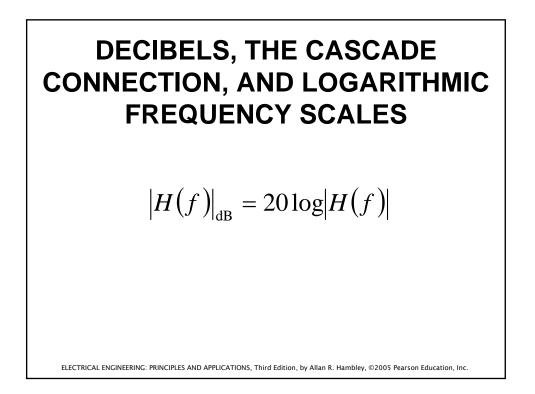






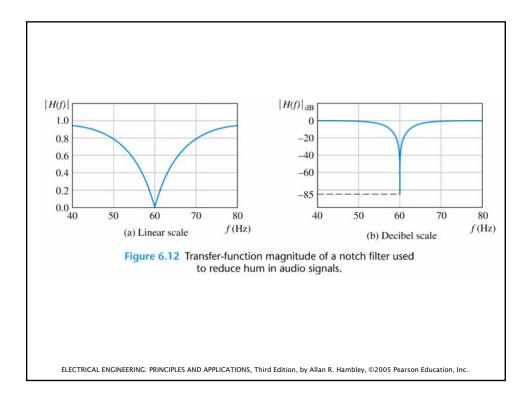


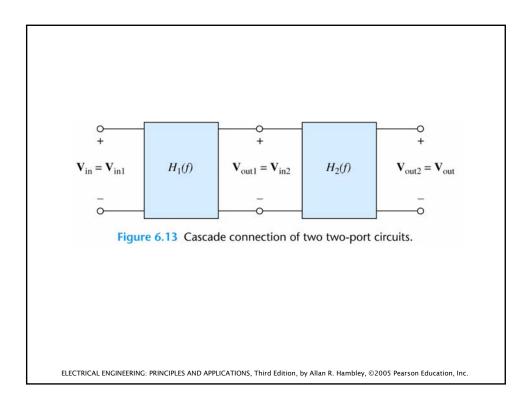


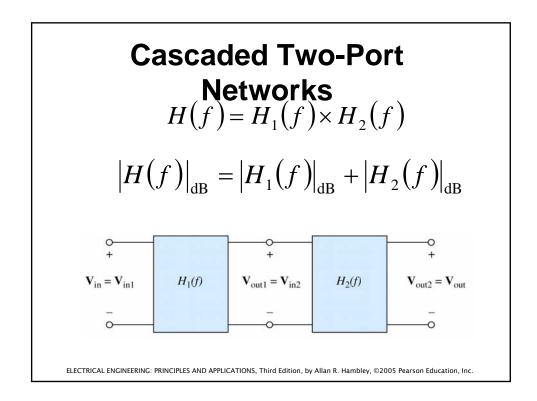


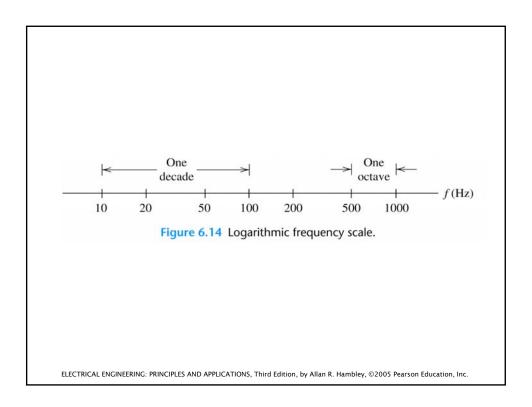
H(f)	$ H(f) _{\mathrm{dB}}$
100	40
10	20
2	6
$\sqrt{2}$	3
$\frac{1}{2}$	0
$1/\sqrt{2}$	-3
1/2 0.1	$-6 \\ -20$
0.1	$-20 \\ -40$
0.01	-40

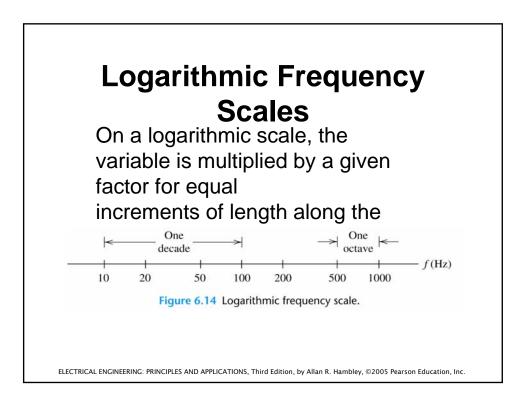
Г



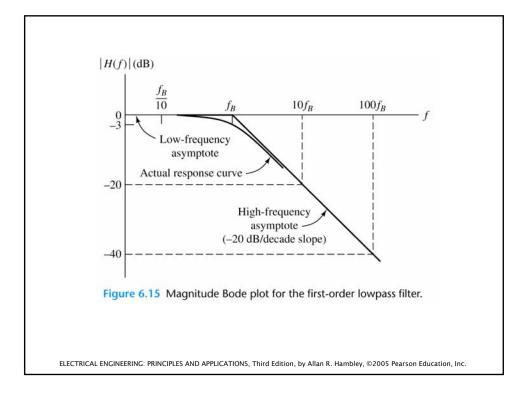


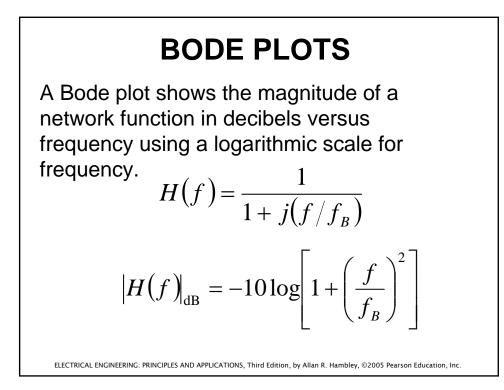


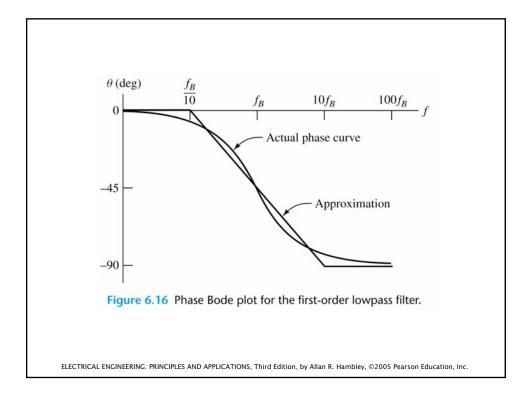


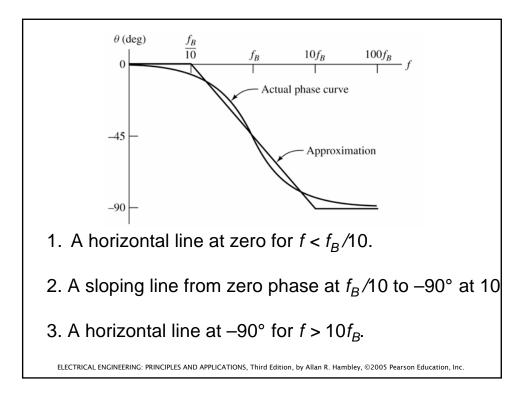


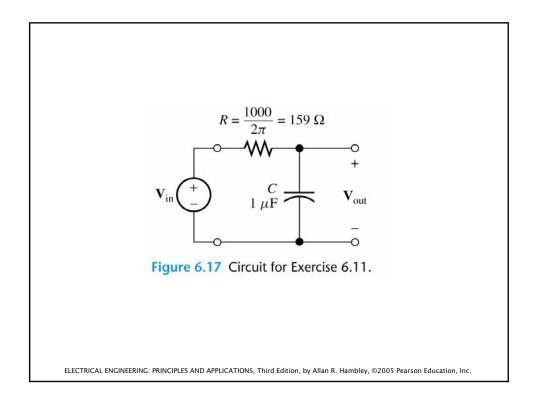
A **decade** is a range of frequencies for which the ratio of the highest frequency to the lowest is 10. number of decades = $\log\left(\frac{f_2}{f_1}\right)$ An **octave** is a two-to-one change in frequence number of octaves = $\log_2\left(\frac{f_2}{f_1}\right) = \left(\frac{\log(f_2/f_1)}{\log(2)}\right)$

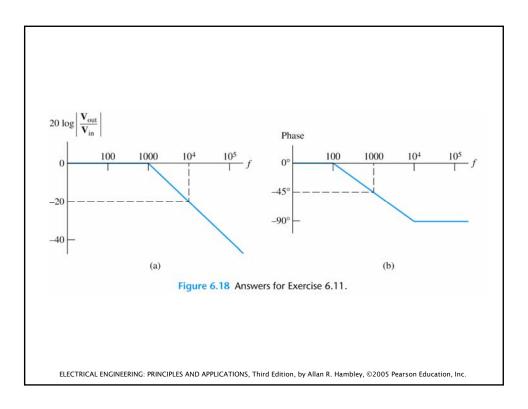


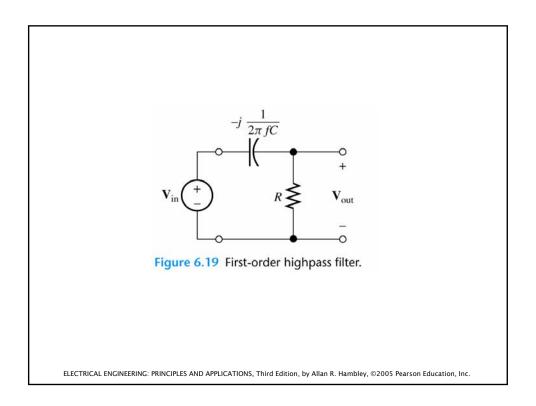


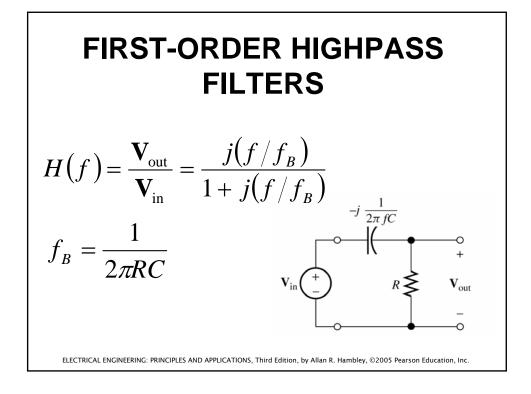


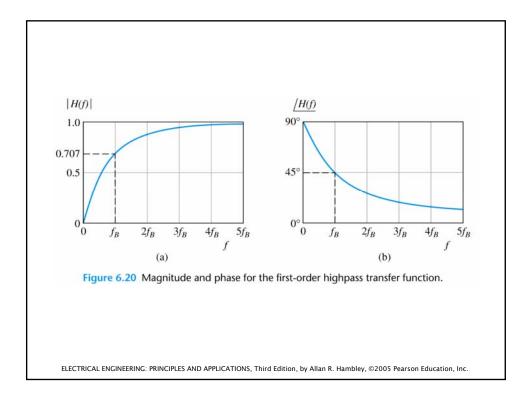


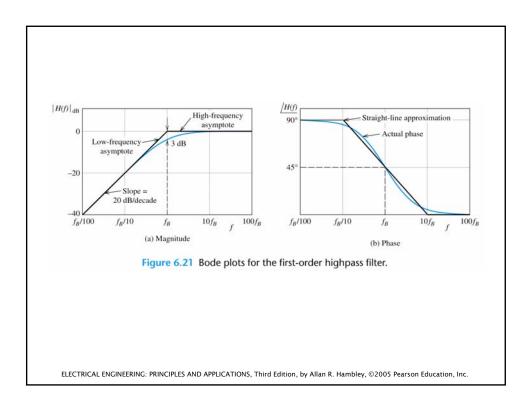


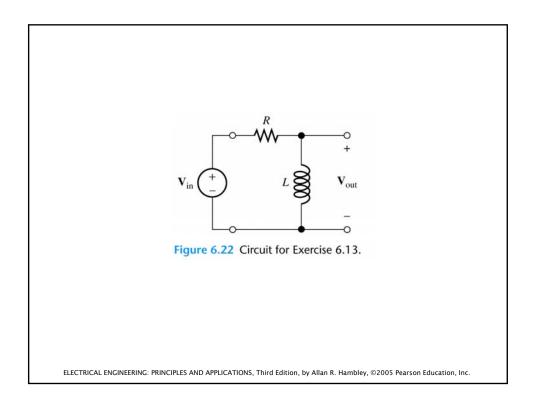


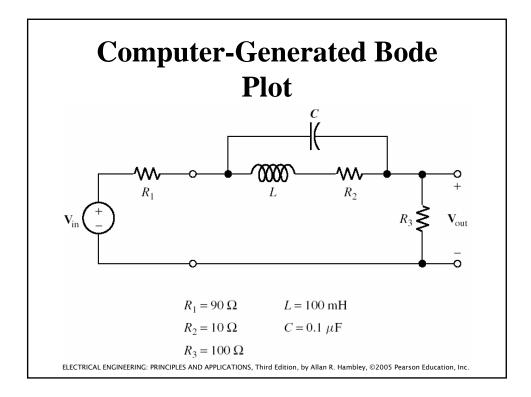












$$H(0) = \frac{R_3}{R_1 + R_2 + R_3} = 0.5$$
$$H_{dB}(0) = 20\log(0.5) = -6 dB$$
$$H(\infty) = \frac{R_3}{R_1 + R_3} = 0.5263$$
ELECTRICAL ENGINEERING: PRINCIPLES AND APPLICATIONS. Third Edition, by Alian R. Hambley, 0205 Pearson Education, Inc.

$$H_{dB}(\infty) = 20 \log(0.5263) = -5.575 \, dB$$

$$H(f) = \frac{R_3}{R_1 + R_3 + 1/[j\omega C + 1/(R_2 + j\omega L)]}$$

$$R1 = 90$$

$$R2 = 10$$

$$R3 = 100$$

$$L = 0.1$$

$$C = 1e-7$$

$$logf = 1:0.001:5;$$

$$f = 10.\land logf;$$

$$w = 2*pi*f;$$

$$H = R3./(R1+R3+1./(j*w*C + 1./(R2 + j*w*L)));$$

semilogx(f,20*log10(abs(H)))

