

Chapter 5 Steady-State Sinusoidal Analysis

- 1. Identify the frequency, angular frequency, peak value, rms value, and phase of a sinusoidal signal.
- 2. Solve steady-state ac circuits using phasors and complex impedances.

- 3. Compute power for steady-state ac circuits.
- 4. Find Thévenin and Norton equivalent circuits.
- 5. Determine load impedances for maximum power transfer.
- 6. Solve balanced three-phase circuits.

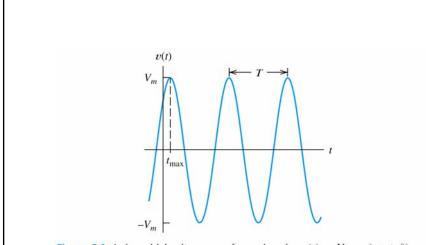


Figure 5.1 A sinusoidal voltage waveform given by $v(t) = V_m \cos(\omega t + \theta)$. Note: Assuming that θ is in degrees, we have $t_{\max} = \frac{-\theta}{360} \times T$. For the waveform shown, θ is -45° .

SINUSOIDAL CURRENTS **AND VOLTAGES**

 V_m is the **peak value**

 ω is the **angular frequency** in radians per second

 θ is the **phase angle**

T is the **period**

ELECTRICAL ENGINEERING: PRINCIPLES AND APPLICATIONS, Third Edition, by Allan R. Hambley, ©2005 Pearson Education, Inc

Frequency

$$f = \frac{1}{T}$$

Angular frequency

$$\omega = \frac{2\pi}{T}$$

$$\omega = 2\pi f$$

$$\omega = 2\pi f$$
$$\sin(z) = \cos(z - 90^\circ)$$

Root-Mean-Square Values

$$V_{\text{rms}} = \sqrt{\frac{1}{T} \int_{0}^{T} v^{2}(t) dt} \qquad I_{\text{rms}} = \sqrt{\frac{1}{T} \int_{0}^{T} i^{2}(t) dt}$$

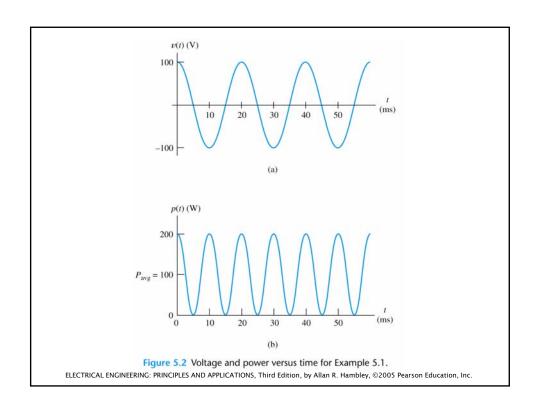
$$P_{\text{avg}} = \frac{V_{\text{rms}}^2}{R} \qquad P_{\text{avg}} = I_{\text{rms}}^2 R$$

ELECTRICAL ENGINEERING: PRINCIPLES AND APPLICATIONS, Third Edition, by Allan R. Hambley, ©2005 Pearson Education, Inc.

RMS Value of a Sinusoid

$$V_{\rm rms} = \frac{V_m}{\sqrt{2}}$$

The rms value for a sinusoid is the peak value divided by the square root of two. This is not true for other periodic waveforms such as square waves or triangular waves.



Phasor Definition

Time function: $v_1(t) = V_1 \cos(\omega t + \theta_1)$

Phasor: $\mathbf{V}_1 = V_1 \angle \theta_1$

Adding Sinusoids Using Phasors

Step 1: Determine the phasor for each term.

Step 2: Add the phasors using complex arithmetic.

Step 3: Convert the sum to polar form.

Step 4: Write the result as a time function.

ELECTRICAL ENGINEERING: PRINCIPLES AND APPLICATIONS, Third Edition, by Allan R. Hambley, ©2005 Pearson Education, Inc.

Using Phasors to Add Sinusoids

Sinusoids
$$v_1(t) = 20\cos(\omega t - 45^\circ)$$

$$v_2(t) = 10\cos(\omega t + 60^\circ)$$

$$\mathbf{V}_1 = 20 \angle -45^\circ$$

$$\mathbf{V}_2 = 10 \angle -30^\circ$$

 $\textbf{ELECTRICAL ENGINEERING: PRINCIPLES AND APPLICATIONS, Third Edition, by Allan \,R.\,Hambley, @2005 \,Pearson \,Education, Incomplete and Principles and Princ$

$$\mathbf{V}_{s} = \mathbf{V}_{1} + \mathbf{V}_{2}$$

$$= 20 \angle -45^{\circ} + 10 \angle -30^{\circ}$$

$$= 14.14 - j14.14 + 8.660 - j5$$

$$= 23.06 - j19.14$$

$$= 29.97 \angle -39.7^{\circ}$$

$$v_s(t) = 29.97\cos(\omega t - 39.7^\circ)$$

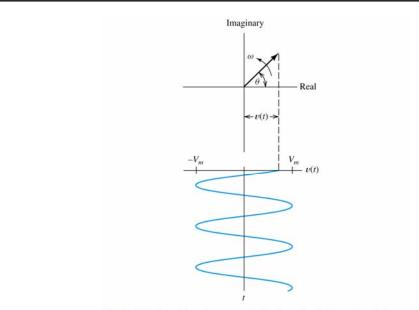


Figure 5.4 A sinusoid can be represented as the real part of a vector rotating counterclockwise in the complex plane.

Sinusoids can be visualized as the realaxis projection of vectors rotating in the complex plane. The phasor for a sinusoid is a snapshot of the corresponding rotating vector at t = 0.

ELECTRICAL ENGINEERING: PRINCIPLES AND APPLICATIONS, Third Edition, by Allan R. Hambley, ©2005 Pearson Education, Inc.

Phase Relationships

To determine phase relationships from a phasor diagram, consider the phasors to rotate counterclockwise. Then when standing at a

fixed point, if \mathbf{V}_1 arrives first followed by \mathbf{V}_2 after a rotation of θ , we say that \mathbf{V}_1 leads \mathbf{V}_2 by θ . Alternatively, we could say that \mathbf{V}_2 lags \mathbf{V}_1 by θ . (Usually, we take θ as the smaller angle between the two phasors.)

To determine phase relationships between sinusoids from their plots versus time, find the shortest time interval t_p between positive peaks of the two waveforms. Then, the phase angle is

 $\theta = (t_p/T) \times 360^\circ$. If the peak of $v_1(t)$ occurs first, we say that $v_1(t)$ leads $v_2(t)$ or that $v_2(t)$ lags $v_1(t)$.

 $\textbf{ELECTRICAL ENGINEERING: PRINCIPLES AND APPLICATIONS, Third Edition, by Allan \,R.\,Hambley, @2005 \,Pearson \,Education, Inc.} \\$

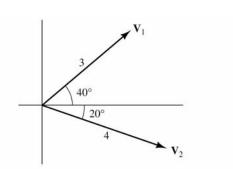
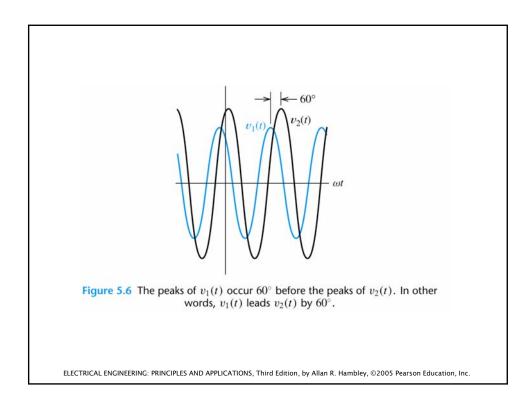
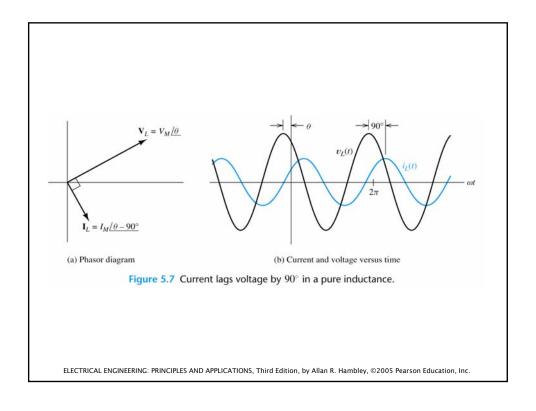


Figure 5.5 Because the vectors rotate counterclockwise, v_1 leads v_2 by 60° (or, equivalently, v_2 lags v_1 by 60° .)





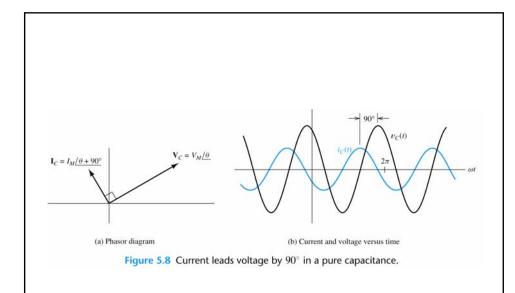
COMPLEX IMPEDANCES

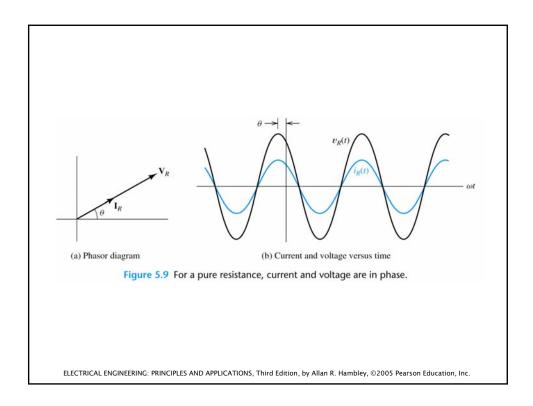
$$\mathbf{V}_{L} = j\omega L \times \mathbf{I}_{L}$$

$$Z_L = j\omega L = \omega L \angle 90^\circ$$

$$\mathbf{V}_L = Z_L \mathbf{I}_L$$

ELECTRICAL ENGINEERING: PRINCIPLES AND APPLICATIONS, Third Edition, by Allan R. Hambley, ©2005 Pearson Education, Inc.

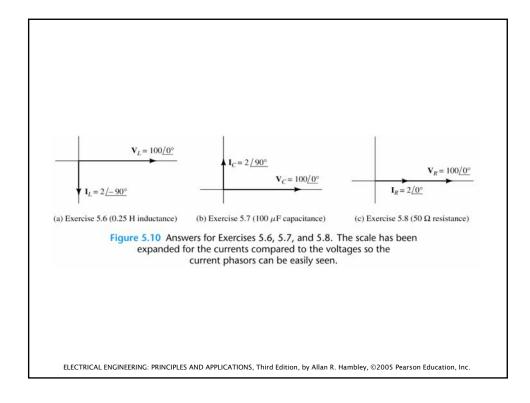




$$\mathbf{V}_C = Z_C \mathbf{I}_C$$

$$Z_C = -j\frac{1}{\omega C} = \frac{1}{j\omega C} = \frac{1}{\omega C} \angle -90^{\circ}$$

$$\mathbf{V}_R = R\mathbf{I}_R$$



Kirchhoff's Laws in Phasor Form

We can apply KVL directly to phasors. The sum of the phasor voltages equals zero for any closed path.

The sum of the phasor currents entering a node must equal the sum of the phasor currents leaving.

Circuit Analysis Using Phasors and Impedances

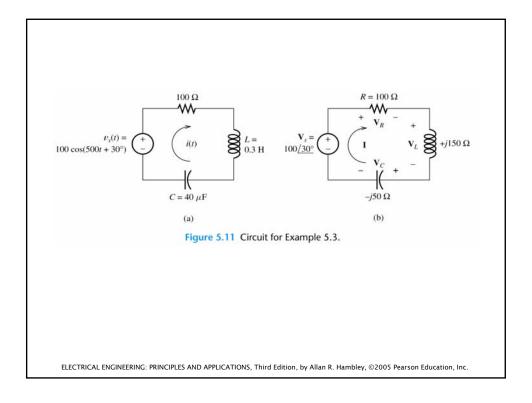
1. Replace the time descriptions of the voltage and current sources with the corresponding phasors. (All of the sources must have the same frequency.)

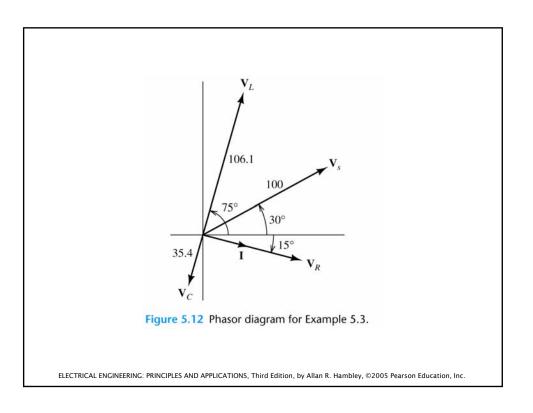
 $\textbf{ELECTRICAL ENGINEERING: PRINCIPLES AND APPLICATIONS, Third Edition, by Allan R. Hambley, @2005 \ Pearson \ Education, Inc. \\ \textbf{Principles And Applications} and \textbf{Principles And Applicatio$

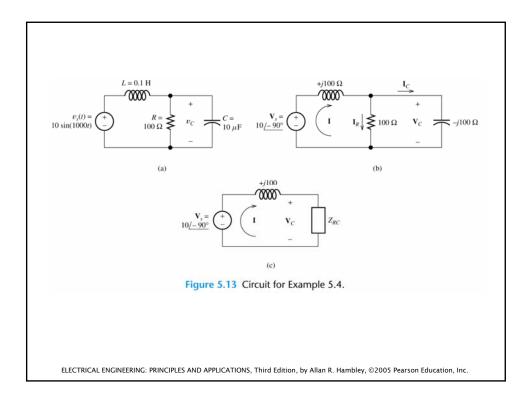
2. Replace inductances by their complex impedances $Z_L = j\omega L$. Replace capacitances by their complex impedances

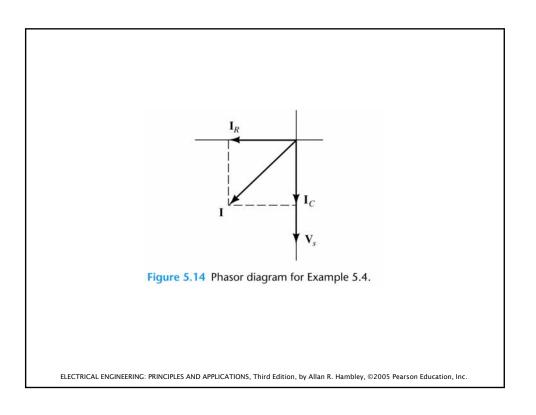
 $Z_C = 1/(j\omega C)$. Resistances have impedances

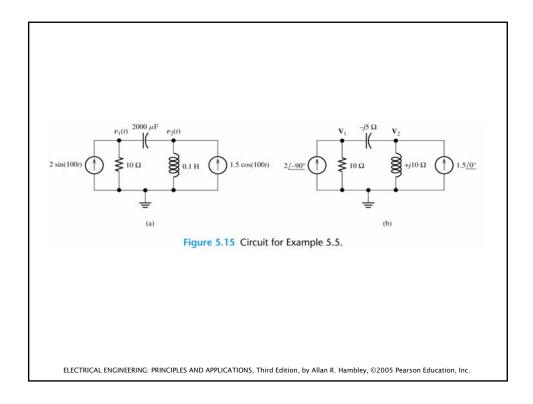
3. Analyze their resistasing any of the techniques studied earlier in Chapter 2, performing the calculations with complex arithmetic.

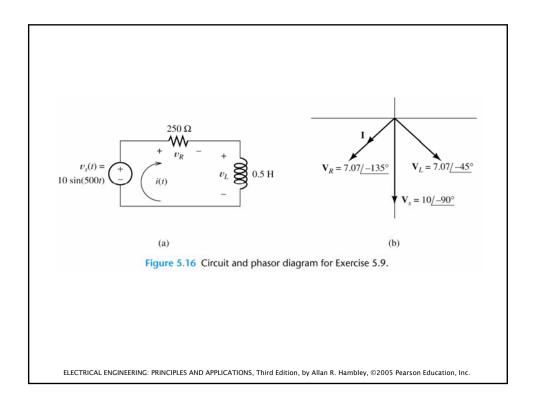


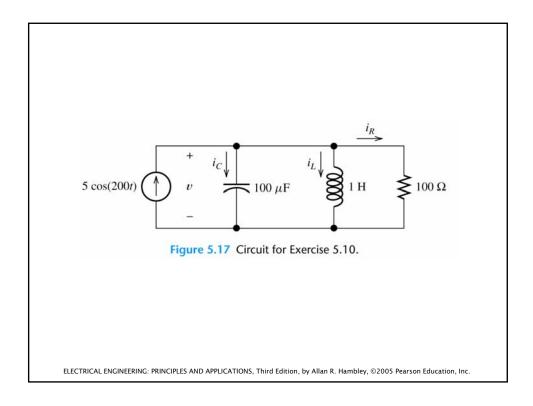


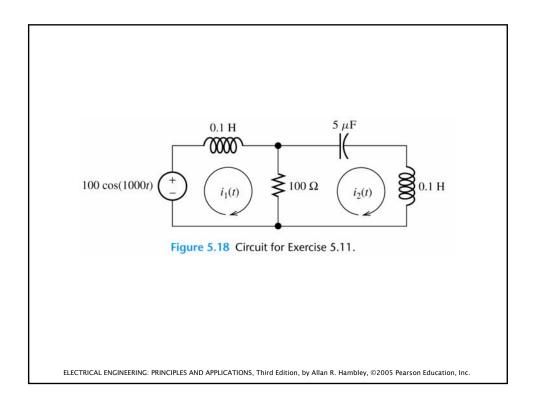












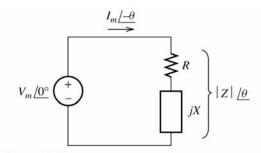
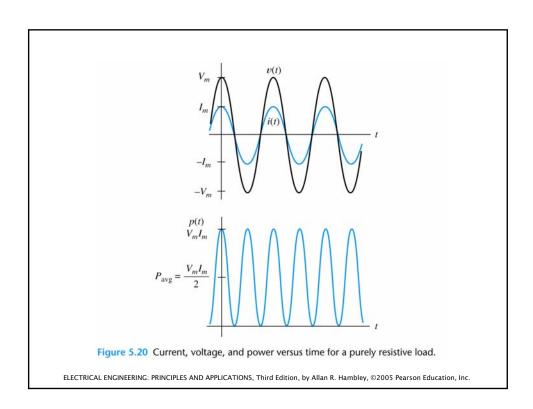
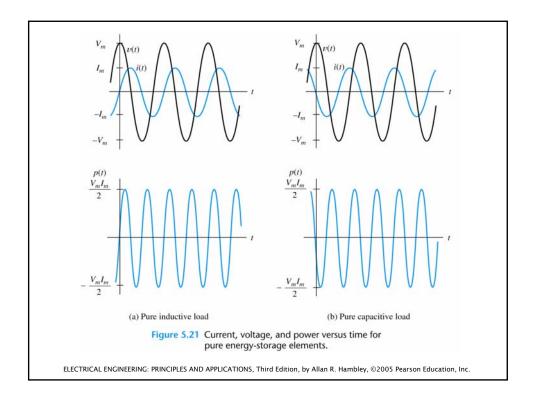


Figure 5.19 A voltage source delivering power to a load impedance Z = R + jX.





AC Power Calculations

$$P = V_{\text{rms}} I_{\text{rms}} \cos(\theta)$$

$$PF = \cos(\theta)$$

$$\theta = \theta_{v} - \theta_{i}$$

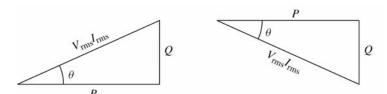
$$Q = V_{\text{rms}} I_{\text{rms}} \sin(\theta)$$

apparent power =
$$V_{\rm rms}I_{\rm rms}$$

$$P^2 + Q^2 = \left(V_{\rm rms}I_{\rm rms}\right)^2$$

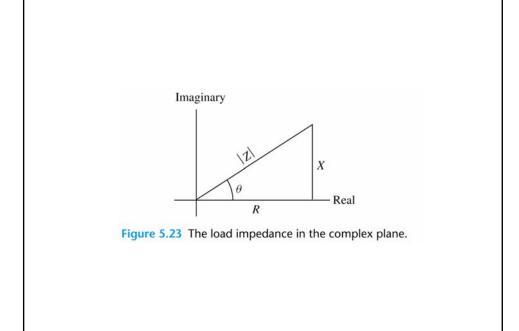
$$P = I_{\text{rms}}^2 R$$
 $P = \frac{V_{\text{Rrms}}^2}{R}$ $Q = I_{\text{rms}}^2 X$ $Q = \frac{V_{\text{Xrms}}^2}{R}$

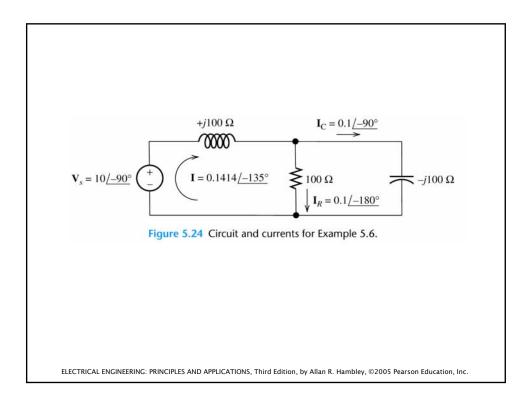
$$Q = I_{\rm rms}^2 X \qquad \qquad Q = \frac{V_{\rm Xrms}^2}{X}$$

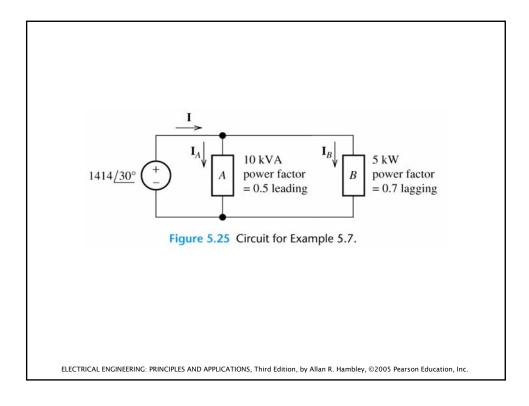


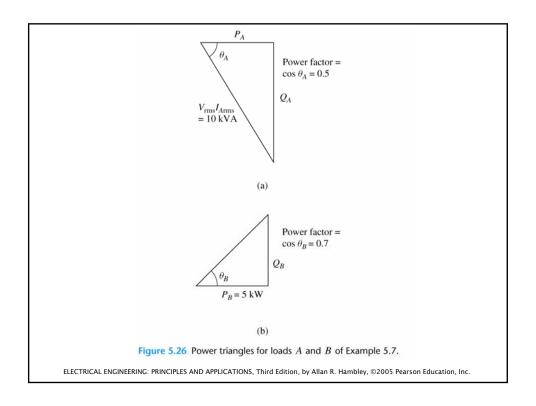
- (a) Inductive load (θ positive)
- (b) Capacitive load (θ negative)

Figure 5.22 Power triangles for inductive and capacitive loads.









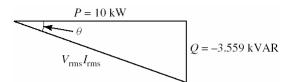
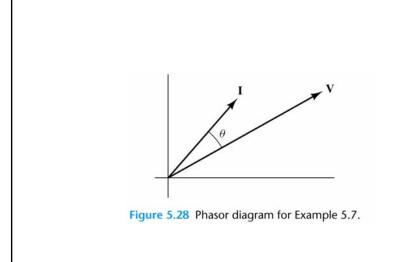


Figure 5.27 Power triangle for the source of Example 5.7.



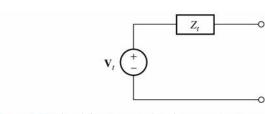


Figure 5.29 The Thévenin equivalent for an ac circuit consists of a phasor voltage source \mathbf{v}_t in series with a complex impedance Z_t .

THÉVENIN EQUIVALENT CIRCUITS

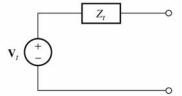


Figure 5.29 The Thévenin equivalent for an ac circuit consists of a phasor voltage source v_t in series with a complex impedance Z_t .

The Thévenin voltage is equal to the open-circuit phasor voltage of the original circuit.

$$\mathbf{V}_t = \mathbf{V}_{oc}$$

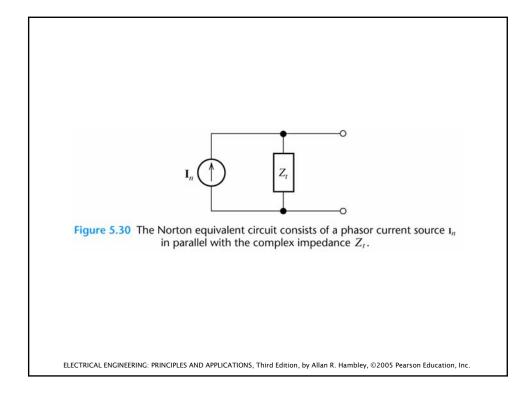
We can find the Thévenin impedance by zeroing the independent sources and determining the impedance looking into the circuit terminals.

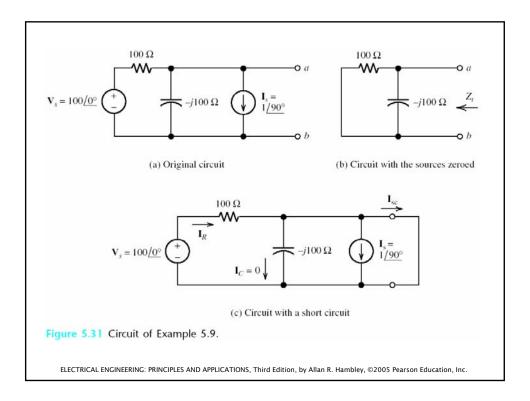
ELECTRICAL ENGINEERING: PRINCIPLES AND APPLICATIONS, Third Edition, by Allan R. Hambley, ©2005 Pearson Education, Inc

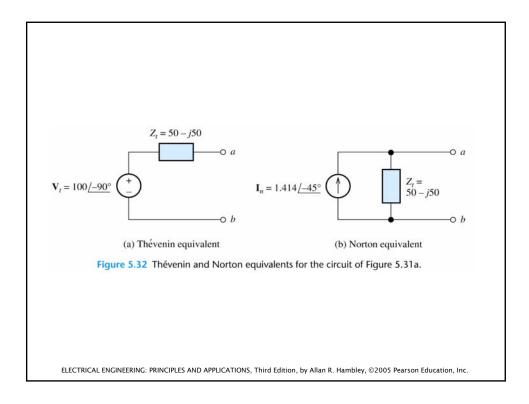
The Thévenin impedance equals the open-circuit voltage divided by the short-circuit current.

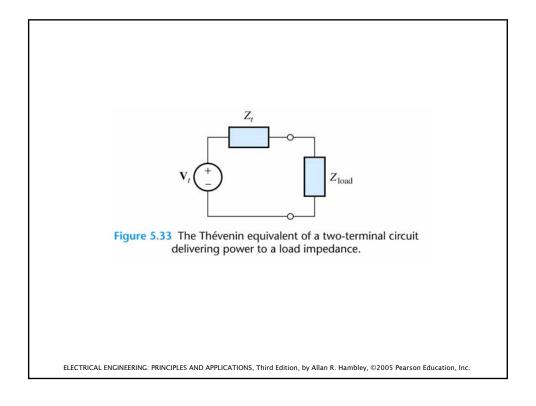
$$Z_t = \frac{\mathbf{V}_{oc}}{\mathbf{I}_{sc}} = \frac{\mathbf{V}_t}{\mathbf{I}_{sc}}$$

$$\mathbf{I}_n = \mathbf{I}_{\mathrm{sc}}$$





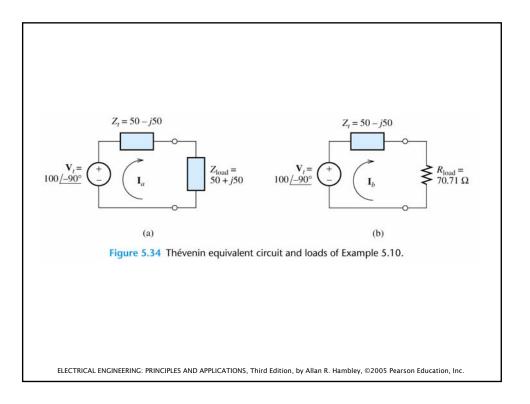




Maximum Average Power Transfer

If the load can take on any complex value, maximum power transfer is attained for a load impedance equal to the complex conjugate of the Thévenin impedance.

If the load is required to be a pure resistance, maximum power transfer is attained for a load resistance equal to the magnitude of the Thévenin impedance.



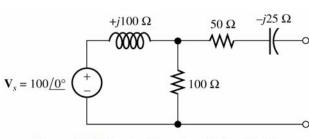
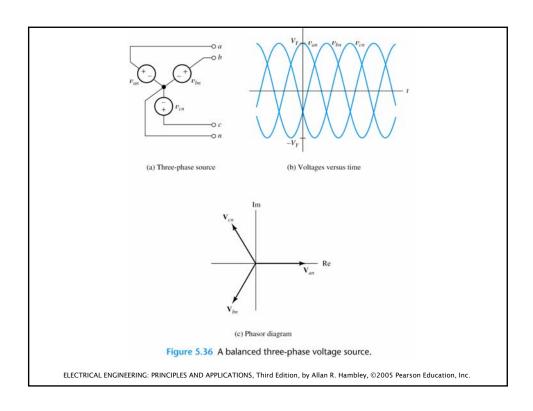


Figure 5.35 Circuit of Exercises 5.14 and 5.15.

BALANCED THREE-PHASE CIRCUITS

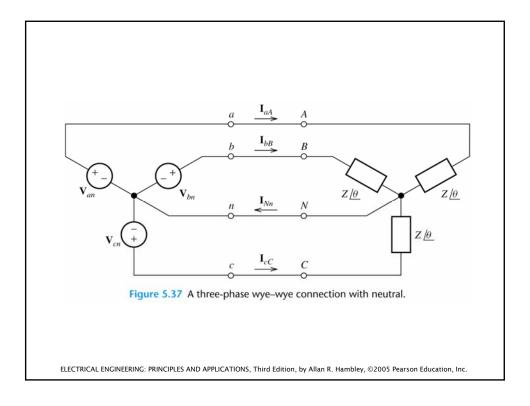
Much of the power used by business and industry is supplied by three-phase distribution systems. Plant engineers need to be familiar with three-phase power.



Phase Sequence

Three-phase sources can have either a positive or negative phase sequence.
The direction of rotation of certain

The direction of rotation of certain three-phase motors can be reversed by changing the phase sequence.



Wye-Wye Connection

Three-phase sources and loads can be connected either in a wye configuration or in a delta configuration.

The key to understanding the various threephase

configurations is a careful examination of the wye-wye circuit.

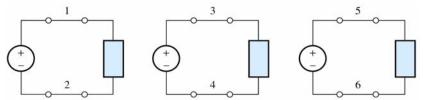


Figure 5.38 Six wires are needed to connect three single-phase sources to three loads. In a three-phase system, the same power transfer can be accomplished with three wires.

$$P_{\text{avg}} = p(t) = 3V_{\text{Yrms}}I_{\text{Lrms}}\cos(\theta)$$

$$Q = 3\frac{V_Y I_L}{2} \sin(\theta) = 3V_{Yrms} I_{Lrms} \sin(\theta)$$

