

Ex 6.5 N-type semiconductor with constant applied field E_0 in +x direction. Finite number of EHPs generated at x=0 at t=0, and then g'=0 for t>0. D_p =10cm²/s, τ_{p0} =10⁻⁷s, μ_p =400cm²/V-s, & E_0 =100V/cm. Find δp for (a) t=10⁻⁷s at (i) x=20µm, x=40µm, & (iii) x=60µm., and (b) x=40µm at (i) t=5x10⁻⁸s, (ii) t=10⁻⁷s, and (iii) t=2x10⁻⁷s. See Example 6.5: For n - type: $D_p \frac{\partial^2(\hat{x}p)}{\partial x^2} - \mu_p E_0 \frac{\partial(\hat{x}p)}{\partial x} - \frac{\hat{x}p}{\tau_{p0}} = \frac{\partial(\hat{x}p)}{\partial t}$ with solution of the form $\delta p(x,t) = p'(x,t) \exp - \frac{t}{\tau_{p0}}$ Substitute $\left[D_p \frac{\partial^2 p'(x,t)}{\partial x^2} - \mu_p E_0 \frac{\partial p'(x,t)}{\partial x} - \frac{p'(x,t)}{\tau_{p0}}\right] \exp - \frac{t}{\tau_{p0}} = \left[\frac{\partial p'(x,t)}{\partial x} - \frac{p'(x,t)}{\tau_{p0}}\right] \exp - \frac{t}{\tau_{p0}}$ has solution $p'(x,t) = \frac{1}{\sqrt{4\pi D_p t}} \exp - \frac{(x - \mu_p E_0 t)^2}{4D_p t}$ $\delta p(x,t) = \frac{e^{-\frac{t}{\tau_{p0}}}}{\sqrt{4\pi D_p t}} \exp - \frac{(x - \mu_p E_0 t)^2}{4D_p t}$ 107/2012 ECE415/515 Fall 2012 J.E.Morris 22

Ex 6.5 N-type semiconductor with constant applied field E_0 in +x direction. Finite number of EHPs generated at x=0 at t=0, and then g'=0 for t>0. D_p=10cm²/s, τ_{p0} =10⁻⁷s, μ_{p} =400cm²/V-s, & E₀=100V/cm. Find δp for (a) t=10⁻⁷s at (i) x=20μm, x=40μm, & (iii) x=60μm., and (b) x=40µm at (i) t=5x10⁻⁸s, (ii) t=10⁻⁷s, and (iii) t=2x10⁻⁷s. $\frac{e^{-t/\epsilon_{p^{0}}}}{(4\pi D_{p}t)^{1/2}} \exp\left[\frac{-(x-\mu_{p}E_{0}t)^{2}}{4D_{p}t}\right]$ (a) $\mu_{\mu}E_{0}t = (400)(100)(10^{-7}) = 4 \times 10^{-3} \text{ cm} = 40 \,\mu \text{ m}$ (i) $x = 20 \ \mu \text{ m.}$ $dp = \frac{0.36788}{3.545 \times 10^{-3}} \exp\left[\frac{-(-2 \times 10^{-3})^2}{4 \times 10^{-4}}\right] = 38.18$ (ii) $x = 40 \ \mu \text{ m}$, $p = \frac{0.36788}{3.545 \times 10^{-3}} \exp[0] = 103.8$ (iii) $x = 60 \ \mu \text{ m}, \ \text{d}p = \frac{0.36788}{3.545 \times 10^{-3}} \exp \left[\frac{-(2 \times 10^{-3})^2}{4 \times 10^{-6}}\right] \ \text{d}p = 38.18$ (b) x = 40 μ m (i) $t = 5 \times 10^{-6}$ s, $dp = \frac{0.60653}{2.50663 \times 10^{-3}} \exp\left[\frac{-(2 \times 10^{-3})^2}{2 \times 10^{-6}}\right]$ - 32.75 0.36788 (ii) $t = 10^{-7}$ s, $dp = \frac{0.36788}{3.545 \times 10^{-3}} \exp[0] = 103.8$ $\int -(-4 \times 10^{-3})^2$ 0.1353 $(iii) t = 2 \times 10^{-7} \text{ s}, p = \frac{0.1353}{5.013 \times 10^{-3}} \exp (1000 \text{ m})$ -3.65 8×10-6 10/7/2012 ECE415/515 Fall 2012 J.E.Morris 24

Assignment #3			
	57	63	
	5.21	6.14	
	5.35	6.15	
	5.49	6.31	
10/7/2012			20
10/7/2012	ECE415/515	ECE415/515 Fall 2012 J.E.Morris	