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EE415/515 Fundamentals 
of Semiconductor Devices

Fall 2012

Lecture 5:
Drift & Diffusion  

(Chapter 5)
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Drift in Electric Field
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 Electrons have thermal energy of kT/2.

 Mean square thermal velocity   ½mn
*vth

2 = 3kT/2

mn* = 0.26m0 ; m0 = free electron mass.

vth = 2.3x107 cm/s at T = 300K

 Under an applied electric field Ex the electron acquires a drift velocity vd.
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Carrier Drift
Consider electrons
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Drift current
 Current density = sum of charge * velocity (definition)
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Drift (summary)
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Ex 5.1  A drift current density Jdrift=75A/cm2 is required in a 
p-type Si device for field E=120V/cm. Determine the 
required impurity doping concentration, assuming electron 
and hole mobilities in Table 5.1.
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Conductivity/resistivity
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Mobility Values

 Note that mobility depends on total dopant concentration.
 For compensated semiconductors

• Scattering depends on (Na+ Nd)    Remember this!
• Carrier density depends on (Na- Nd)

 Compensated semiconductors can have much lower mobility 
than uncompensated material of the same carrier density.
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Scattering and mobility

 Electric field accelerates 
electrons.

 For steady state 
acceleration is balanced 
by scattering.

 Scattering decreases 
carrier lifetimes τcn, τcp

 With increasing 
temperature
• Lattice scattering 

increases
• Impurity scattering 

decreases
 Mobility “adds” 

reciprocally.
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Lattice Scattering

 A perfectly periodic lattice would not scatter 
electrons.

 Vibrations of atoms due to temp. disturb periodicity.

 “Phonons” have an energy hv.  Lowest levels have 
energy 0.063 eV.

 As temperature decreases vibration decreases and 
scattering decreases.

• Varies as T-n where 1.66 < n < 3

• Compare text μL T-1.5

 Mobility increases as temperature decreases with 
lattice scattering.
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Impurity Scattering

 Dopant impurities cause local distortions in the crystal 
lattice.
• As temperature decreases electron velocity decreases.

• Electrons remain near impurities a longer time => larger 
scattering.

 Mobility increases as temperature increases with 
impurity scattering.
• About T3/2

• Compare text  μI T+1.5/NI , and note NI = Na+Nd

 Other impurities and crystal defects have similar 
effects.  (e.g. contaminents, surface effects, grain 
boundaries in poly-crystalline material.) 
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Combining scattering processes

 May have two or more scattering processes.

 Probability of scattering in time dt by process i is
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 For lattice scattering mobility increases as temperature decreases

 For impurity scattering mobility increases as temperature increases

 Increase in impurity concentration (of various kind) reduces mobility

 May have two or more scattering processes.
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Ex 5.2  Use Fig 5.2 above to find the hole mobility in Si for:
(a) T=25°C for (i) Na=1016/cm3 and (ii) Na=1018/cm3 , and
(b) Na=1014/cm3 for (i) T=0°C and (ii) T=100°C
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Low-field mobility in silicon as a function of temperature for electrons and holes. 
The solid lines represent the theoretical predictions for pure lattice scattering.
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Electron and hole mobilities in silicon at 300 K as functions of the total 
dopant concentration. The values plotted are the results of curve fitting 

measurements from several sources.
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Doping µ(As)

(cm2/Vs)

µ(P)

(cm2/Vs)

µ(B)

(cm2/Vs)

1E13 1423 1424 486

1E14 1413 1416 485

1E15 1367 1374 478

1E16 1184 1194 444

1E17 731 727 328

1E18 285 279 157

1E19 108 115 72
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ρ vs NI=Na+Nd

Temperature effects
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σ(T) doesn’t follow n(T) 
exactly because of μ(T)
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Ex 5.3  Compensated p-type Si at 300K has 
Na=2.8x1017/cm3 and Nd=8x1016/cm3. 

Find (a) hole mobility, (b) conductivity, and (c) resistivity. 
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Ex 5.4  A p-type Si bar (Fig 5.5 above) has c/s area A=10-6 cm2 and 
length L=1.2x10-3cm. A current of 2mA is required for 5V applied. 
What is the required (a) resistance, (b) resistivity, and (c) impurity 
doping concentration? (d) What is the resulting hole mobility?

10/7/2012 ECE415/515 Fall2012 J.E. Morris 22



10/7/2012

12

High Field Effects

 We assumed Ohm’s law was valid  I=V/R
• Drift current proportional to electric field, conductivity constant.

 For large electric fields (>103 V/cm) current shows sublinear 
dependence on field.  Ohm’s law invalid.

 Hot carrier effect:  drift velocity ≥ thermal velocity (~107 cm/s)
• Effective temperature Te due to increasing kinetic energy.

• Begins scattering with “optical” phonons, which transfers 
energy to the lattice effectively.

 At high fields Ohm’s law doesn’t hold and current is lower 
than expected.
• “Hot carriers” have velocities exceeding thermal velocity.
• Velocity saturates.
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Drift velocities vs Field (Fig 1.172)

Holes 300K

Electrons
77K

e- 300K
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High field effects

 Scattering limited velocity 
gives fairly constant current 
at high fields.  

 (Si, Ge and others)

• Some electrons can 
exceed that velocity.

 Can have a decrease in 
velocity at high fields (GaAs
and others) causing 
negative conductivity and 
current instabilities.
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GaAs negative differential resistance
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Electrons in conduction band:

Lower valley: mn* small, high E gives high v 
Scatter into higher valley, higher mn*
Hence lower mobility, μ, and current

Diffusion currents
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Total current
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Ex 5.5  Hole density is given by p(x)=1016exp-x/Lp (x≥0) in Si 
where Lp=2x10-4cm and Dp=8cm2/s. Determine the hole diffusion 
current density at (a) x=0, (b) x=2x10-4cm and (c) x=10-3cm.
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Graded impurity distribution 
induces electric field
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Einstein Relation
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Mobilities and diffusion constants
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Ex 5.6 Assume Nd(x)=1016exp-x/L at 300K in an N-type 
semiconductor, where L=0.02cm. Determine the induced 
electric field at (a) x=0 and (b) x=10-4cm.
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Ex 5.7 Assume Dn=215cm2/s at 300K and determine μn.
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Hall Effect
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For currents in the +ve x-direction as shown:
Forces F=qvxB on holes/electrons as shown

VH +ve for holes
VH -ve for electrons

Hall Effect:
Magnetic field shifts the hole/electron 
distribution in the -y direction.
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Hall Effect: Consider P-type
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If magnetic field is applied perpendicular to current direction, 

holes are deflected.

F=q(E+v x B)    

i.e. here Fy = q(Ey – vxBz)

For steady state current must be constant 

so forces must balance.  

Ey = vxBz = (JxBz)/(qp0) = RH JxBz

VAB = Eyw = Hall voltage, 

measured for applied Jx & Bz

w=width of bar in y direction

RH = (qp0)-1

= Hall coefficient 

= Ey/JxBz

Hall effect:  Calculating mobility

 Can measure Hall voltage for applied current & magnetic field  
to calculate carrier concentration

 Can measure resistance to calculate resistivity 
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Measuring Hall coefficient and resistivity over a range of 
temperatures gives carrier concentration and mobility vs.
temperature.

Electrons: Similar effect, opposite Hall voltage sign
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Ex 5.8 P-type Si as in Fig 5.13 above. 
L=0.2cm, W=0.01cm, d=8x10-4cm, p=1016/cm3, μp=320cm2/V-s. 
For Vx=10V, B=500gauss=0.05tesla, find Ix and VH.
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A precision, linear-output, Hall-sensor chip. The integrated circuit contains bias 
elements, temperature-compensation circuitry, and on-chip amplification. The chip 
area is 1.12 by 1.98 mm2 and the Hall element (large pattern on the). lower right-

hand side) measures 230 by 335 μm2. (Courtesy: G. B. Hocker, Honeywell 
Corporation
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