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EE415/515 Fundamentals 
of Semiconductor Devices

Fall 2012

Lecture 2: Energy bands

(Chapter 3.1-3.3)

Today’s Questions

 What are the different types of solids?

 How are the atoms arranged in a solid?

 What influences the arrangement?

 Why are the states in a solid different from those 
in isolated atoms or molecules?

 How does that arrangement influence the 
electrical characteristics of the material?

 What is a semiconductor?

 How do we develop the band model from all this?
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Overview

 Structure of solids and how different 
properties arise.
• Metal

• Insulator

• Semiconductor

 Energy bands and forbidden gaps

 Effective mass
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How to Model Solids

 Bond model:  Consider bonds between 
many individual atoms.
• Great visual model, important for intuition.  

 Energy band model: Consider energy 
bands of individual atoms and how they 
combine and deform when brought 
together.
• Good for understanding energy related 

topics like energy gaps.
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Bond Model of  Solids

 Ionic:  electrons shifted to one atom to 
complete shell.  Very strong.

 Metallic:  partially filled outer shells lead to 
essentially “free” “sea of electrons.”

 Covalent:  electrons shared fairly equally.  
Quantum interactions lead to bonding.
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Ionic Bonding in Solids
 Ionic bonding (NaCl).  Each Na atom 

surrounded by six Cl and vice versa.

 Na is [Ne]3s1 and Cl is [Ne]3s23p5

 In the lattice each Na gives up the 
electron to a Cl.

 Ions have electronic structure of inert 
atoms, but are charged and therefore 
attract.

 Electrons are tightly bound.

 Therefore NaCl is a good insulator.
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Metallic Bonding

 Outer shell only partially filled.  
• E.g. alkali metals have only one electron 

which is easily given up.

• Good chemical activity and electrical 
conductivity.

 Solid made of ions with closed shells and 
free electrons.  
• Interaction forces cause metallic bonding.
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III-V compounds 
 Zincblende lattice: In some 

compound semiconductors 
atoms in the diamond structure 
differ on alternating sites. 

 Can vary the mixture of 
elements which allows control 
of electronic and optical 
properties of the material.

GaAs Unit Cell applet
(http://jas.eng.buffalo.edu/education/solid/unitCell/ho

me.html)
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How are elements like carbon 
configured at the atomic level?

 First check periodic chart.  Atomic number = 6.

 Find out how many valence electrons. 

 Then figure out the electronic configuration:  

1s22s22p2

 But when it comes to bonding in a solid it will 
be energetically favorable to have equal bonds 
between equal orbitals.
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Hybridization

 Sometimes the outer orbitals 
will combine in a manner called 
hybridization.

 In elements like carbon and 
silicon it is a lower energy 
orbital combination.

 So you actually get four equal 
sp3 hybrids which are 
tetragonal, rather than s2p2.
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2D representations



9/24/2012

7

Covalent Solids

 Silicon and germanium have a diamond-type 
crystal lattice.  Each atom has covalent bonds 
with four neighbors.

 Two tightly bound electrons for each bond.

 At absolute zero all electrons are tightly bound.

 At higher temperatures bonds break creating 
nearly free electrons and empty bonds.

 Empty bond appears like a positive charge.
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Energy bands in solids
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Splitting of energy levels

Single electron Many electrons
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Energy Bond Model of Solids

 Individual atoms have discrete energy levels.

 Pauli exclusion principle:  one fermion (electron) 
per state. 
• Electrons can have spin up or spin down, so that 

means two electrons per energy level.

 As atoms are brought into close proximity the 
energy levels split into more levels to satisfy the 
Pauli Exclusion Principle.
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Two atoms → energy levels split into two

← higher 
probability

← lower energy

Compare 2 LC circuits, 
resonant frequency f0
→ coupling M → f01, f02

Energy Bands
 Two electron wave functions are linear 

combinations of the individual atomic orbitals 
(LCAO.)
• Odd is called anti-bonding, which is a  higher 

energy level.
• Even is called bonding, which is a lower energy 

level.
• Lower energy holds crystal together.

 As many atoms are brought together the split 
levels form continuous bands of energies.
• Note that this is a mental model for visualization.
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Energy levels split into bands
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Energy bands in Silicon

 N atoms brought into crystal lattice.
• 2N electrons from the 3s states.

• 2N electrons from the 6p states.
• 4N electrons available for 8N states.

 As the spacing decreases the energy states split 
into bands separated by an energy gap Eg.  

• Upper “conduction” band contains 4N states.

• Lower “valence” band contains 4N states.

• At 0K every state in valence band will be filled.
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Kronig-Penney 
Model

Model is a demonstration of 
the band structure of solids 
and of effective electron mass.

No quantitative results.

Periodic potential of a 1D 
crystal lattice →

Kronig-Penney Model
(energy bands and effective mass)

Note:
Rectangular potential approximation
Shift in V(x) zero reference

u(x) periodic in (a+b)
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Kronig-Penney Model
(energy bands and effective mass)
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Kronig-Penney Model
(energy bands and effective mass)
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Kronig-Penney Model
(energy bands and effective mass)
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Kronig-Penney Model
(energy bands and effective mass)
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Kronig-Penney Model

cos(ka) = cos(ka+2nπ) = cos(ka-2n π), so can collapse figure

Electron conduction: 
electron-hole pairs (EHPs)
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Intrinsic: Electron-hole pairs (EHPs)
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Effective Mass
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Completely filled valence band:

Remove electron → hole
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Charge transport
 For electrons in solids to move there must be available 

empty states.
 In Si at 0K the valence band is completely filled and the 

conduction band is completely empty.
• No charge transport.

 Insulators are the same, however the band gap is 
larger in an insulator than in silicon.
• Silicon Eb=1.1ev.  Small enough to allow excitation 

into the conduction band from thermal or optical 
energy.

• Diamond Eg=5ev
 Metals have overlapping or partially filled bands.

• Many charges available to move (conduction).

38
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Hole conduction

Lecture 1b p.39
Introduction

Hole conduction

Lecture 1b p.40
Introduction
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Semiconductors: T=0K & T>0K

Metals
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Insulator, semiconductor, & metal

Semiconductor Materials
 Resistivities of materials used in solid state 

devices cover wide extremes.
• Conductors:  resistivity <10-2 Ω-cm

• Aluminum <10-6 Ω-cm

• Resistors:  resistivity >105 Ω-cm

• Insulators:

• Silicon Dioxide ~1016 Ω-cm

• Plastics in packaging ~1018 Ω-cm

 Semiconductors have intermediate resistivities.
• Resistivity can be widely varied.

Lecture 1b p.44
Introduction
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Practical (3D) bands
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band in valence 0 band, conductionin  0 **  mm
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Direct and Indirect Semiconductors

 When more exact quantum mechanical calculations are 
done the energy levels can be plotted against the 
propagation vector k (aka wave-vector).

 (ћk) is like particle momentum, which is = ??
 In direct semiconductors like GaAs the minimum of the 

conduction band and the maximum of the valence band 
occur at the same k value (k=0.)

 In indirect semiconductors like silicon the valence band 
max is at a different k value.
• A transition between bands requires a change in k

value (momentum) and is therefore less likely.
• Usually done via a defect level.

48
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Extrinsic
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Today’s Questions

 What are the different types of solids?
• Crystalline, amorphous, polycrystalline or 
• Semiconductor, metal, insulator.

 What influences the arrangement?
• The outer shell electrons.
• What states are available and occupied.

 Why are the states in a solid different from those in 
isolated atoms or molecules?
• Pauli exclusion principle allows only one electron per state.

 Why are two electrons allowed in an S-shell then?
• Electron spin up and spin down

52
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Questions

 How do these states change when a large number of 
atoms are brought together?
• They must split into multiple states so that only one electron 

will be in each state.
• There are so many of these states that they appear to be a 

continuum, or a band of available energies.

 How does that arrangement influence the electrical 
characteristics of the material?  What band 
configuration makes an insulator or semiconductor?
• Insulators and semiconductors have a valence band and a 

conduction band separated by a band gap.

53

Questions
 What is the difference in band structure between 

a semiconductor and an insulator?
• Semiconductors have smaller band gaps (~1ev) 

so are more likely to experience thermal or optical 
excitation into the conduction band.

 What do the energy bands of a metal look like?
• Bands overlap to provide a continuum with no 

energy gap, i.e. no distinction between valence 
and conduction electrons, and

• Conduction band is partially filled at non-zero 
temperatures.

54
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Questions

 How many states are available in the outer shell?  
How many are filled?
• 8 states available (2 s and 6 p).  4 are filled with 

electrons.
 What kind of orbitals result from this configuration?  

How are they arranged in space?
• sp3 hybrid orbitals.  Four orbitals arranged in a 

tetrahedron.
 What kind of crystal structure results? 

• Diamond.  Looks like two interpenetrating FCC 
lattices.

55

Questions
 What is the electronic configuration of an metal?  

How does that lead to good conductivity?
• Outer shells only partially filled.  Electrons easily 

given up and not tied to a particular atom.

 How does ionic bonding affect the electrical 
characteristics?
• The transfer of electrons leads to effective charge 

on the ions and complete shells.  So electrons are 
tightly bound and not available for conduction.

56
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Assignment #1

1. 1.8
2. 1.27
3. 2.7
4. 3.1
5. 3.12
6. 3.18
7. 3.19
8. 3.21
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