

- Outer shell only partially filled.
 - E.g. alkali metals have only one electron which is easily given up.
 - Good chemical activity and electrical conductivity.
- Solid made of ions with closed shells and free electrons.
 - Interaction forces cause metallic bonding.

7

Electron orbit around donor impurity

$$r_n = n^2 \frac{K^2 \hbar^2}{mq^2} \& K = 4\pi\varepsilon_r \varepsilon_0$$

For Si: $m^* = 0.26m_0 \& \varepsilon_r = 11.8$

For n = 1: $r_1 = 2.41 nm \approx 4a$ for a = 0.543 nm

i.e. orbit encompasses many lattice atoms

i.e. essentially free due to shielding effects

and lattice vibrations (phonons)

Assignmen	t #1		
1. 2. 3. 4. 5. 6. 7. 8.	1.8 1.27 2.7 3.1 3.12 3.18 3.19 3.21		
			57