

7

	3		
Table 11.1 Summary of constant-field device scaling			
	Device and circuit parameters	Scaling facto $(k < 1)$	
Scaled parameters	Device dimensions (L, t_{ox}, W, x_j)	k	
	Doping concentration (N_a, N_d)	1/k	
	Voltages	k	
Effect on device	Electric field	1	
parameters	Carrier velocity	1	
	Depletion widths	k	
	Capacitance ($C = \epsilon A/t$)	k	
	Drift current	k	
Effect on circuit	Device density	$1/k^2$	
parameters	Power density	1	
	Power dissipation per device $(P = IV)$	<i>k</i> ²	
	Circuit delay time ($\approx CV/I$)	K 13	
	Power-delay product $(P\tau)$	<i>K</i> ³	
Source: Taur and Ning [23	3].		
10/29/2012	J. E. Morris	24	

(Streetman)				
Quantity or dimension	Scaling factor			
Surface dimensions (L, Z)	1/K			
Vertical dimensions (d, x _i)	1/K			
Impurity concentrations	К			
Current, voltages	1/K			
Current Density	К			
Capacitance (per unit area)	К			
Transconductance (g _m)	1			
Circuit delay time	1/K			
Power dissipation	1/K ²			
Power density	1			
Power-delay product	1/K ³ E. Morris			

10/29/2012

Drain-induced Barrier Lowering (DIBL) Junctions too deep or doping too low \rightarrow source and drain start "interacting". This results in reduction of barrier for electron injection into channel. \rightarrow reduction in V_{τ} at higher V_{D} Think of it as drain voltage "pulling down" the potential on the source side Solutions: increased substrate doping and shallow (scaled depth) junctions. Uniformly increasing doping has bad side-effects; halo implants could be used, but How is this reflected in I-V curves and what are the circuit implications? What's a model for this? $I_D \propto (L - \Delta L)^{-1} \approx L^{-1}(1 + \Delta L/L) = (1 + \lambda V_D)/L$ $I_D = \frac{Z}{2L} \mu_n C_i (V_G - V_T)^2 (1 + \lambda V_D)$ which produces a slope in output characteristics. Parameter λ is a fitting parameter that includes all possible effects 10/29/2012 J. E. Morris 44

	(a) $N_h = (10^{18})(120 \times 10^{-8}) = 1.2 \times 10^{12} \text{ cm}^{-2}$
Ex 11.7 Calculate the	
radiation-induced oxid	$Q_{\pi} = (1.2 \times 10^{-1})(0.2) = 2.4 \times 10^{-1} \text{ cm}^{-2}$
charge trapping, for a	MOS $C_{xx} = \frac{(3.9)(8.85 \times 10^{-14})}{2}$
t _{ox} of (a) 12nm & (b) 8	$120 \times 10^{-8} = 2.876 \times 10^{-7} \text{ F/cm}^2$
(c) What can be said a ΔV_{T} as t_{ox} decreases?	Then $\Delta V_T = -\frac{Q'_{ii}}{C_{ox}} = -\frac{\left(2.4 \times 10^{11}\right)\left(1.6 \times 10^{-19}\right)}{2.876 \times 10^{-7}} = -0.134 \text{ V}$
Assume an ionizing pulse creates 10 ¹⁸ EHPs/cm ³ in the	
oxide, and that the electrons are swept out through the gate	(b) $N_h = (10^{18})(80 \times 10^{-8}) = 8 \times 10^{11} \text{ cm}^{-2}$
terminal with zero recombination, and	$Q'_{z} = (8 \times 10^{11})(0.2) = 1.6 \times 10^{11} \text{ cm}^{-2}$
that 20% of the holes are trapped at the oxide-	$C_{ox} = \frac{(3.9)(8.85 \times 10^{-14})}{80 \times 10^{-8}} = 4.314 \times 10^{-7} \text{ F/cm}^2$
semiconductor interface.	$\Delta V_T = -\frac{Q'_{zz}}{C_{ax}} = -\frac{\left(1.6 \times 10^{11}\right)\left(1.6 \times 10^{-19}\right)}{4.314 \times 10^{-7}} = -0.0593 \text{ V}$
10/29/2012	(c) Threshold voltage shift decreases when the oxide thickness decreases.

Assignment	: #6	
10.36	11.2	
10.42	11.5	
10.47	11.10	
10.52	11.17	
10/29/2012	J. E. Morris	66