

- Rotate
 - The resistor is horizontal; we want it vertical
 - We have to "select" the device
 - Draw a box around it with the left button
 - Color changes if successful
 - · Go to Edit and select Rotate
 - · Click away from device to de-select
 - Can drag device when "selected"
- Transmission lines, ground & source
 - Repeat for the lines (T), but now we want two
 - Repeat to place a ground (GND_EARTH)
 - You need THREE grounds for this circuit
 - At the load, at the source, AND where the "common" line connections meet
- Use Vpulse for the source
- Wiring
 - In Draw, select Wire
 - · This gives you a pencil to draw connections
 - · Move the pencil to close to one wire, and click
 - Move to next, and click again
 - Right click to turn the pencil off
- Attributes
 - Select the component you want to change from default values (sometimes tricky)
 - We specify component values with the Attributes button
 - Select the parameter to change
 - · Type in the value
 - Save attribute
 - Do next

8

- Values
 - R=200
 - T1 (at source): Z0=50 TD=10n
 - T2 (to load): Z0=100 TD=20n
 - Vpulse: V1=0 V2=1 (or anything)
 - TD=0 TR=0.1n PW=500n
 - The times are to make the line delay much greater than the input step risetime, and to get the falling edge out of the times of interest
- Voltage probes
 - Use the mouse to click and drag the voltage probes from the menu bar to the points we want:
 - Source voltage
 - Mid-line voltage
 - Load resistor voltage
 - We want all wrt ground, so no need to insert ref points[®]

Analysis

- In the Analysis box:
 - Do Probe Set Up (Auto-run Probe)
 - In Set Up, set "Transient"
- Hit Simulate (in Analysis box, or the icon to the left.)
- · Will show errors, or analysis run
- Close box; Probe will come up
- Probe may show no plots ---- no problem!

Probe plots

- Under Plot:
 - Choose the X-axis range user defined (say 250ns=0.2microsecs)
- Under Trace:
 - Add trace
 - Select from the list (of all parameters stored from the transient analysis)
 - Convention is V(T1,A+) means input (A) "central" conductor of T1

Substitute Eys = Fo $f_m(x) \exp - jf_m g$ into $\frac{\partial^2 Eys}{\partial x^2} + \frac{\partial^2 Eys}{\partial y^2} + k^2 Eys = 0$ gives $\frac{d^2 f_m(x)}{dx^2} + (k^2 - \beta m^2) f_m(x) = 0 \Rightarrow \frac{d^2 f_m(x)}{dx^2} + K_m^2 f_m(x) = 0$ with general solution $f_m(x) = coo K_m x + sin K_m x$ Boundary conditions: Ey = 0 at x = 0, d (due to conductivy $\therefore f_m(x) = sin m H_X$ $k = Eys = E_0 sin (\frac{m H_X}{dx}) exp - jf_m g$ 4/22/2012 ECE414/514 Electronics 17 Packaging Spring 2012

