ECE414/514 Electronics Packaging Spring 2012 Lecture 12 Thermal B Convection & Radiation

James E. Morris Dept of Electrical & Computer Engineering Portland State University

Symbol	Units	Description	
Α	m ²	Area	
C,	J/kgK	Specific heat	
D	m	Diameter	
8	m/s ²	Gravitational acceleration	
h	W/m ² K	Heat transfer coefficient	
Н	m	Characteristic length (length or width)	
k	W/mK	Thermal conductivity	
L	m	Characteristic length (length or width or diameter)	
m	kg	Mass	
Nu		Nusselt number = (hL/k)	
Pr		Prandtl number = $(\mu C_p/k)$	
0	w	Heat flow	
R	°C/W or K/W	Thermal resistance	
Ra		Rayleigh number	
Re		Reynolds number $(\rho VL/\mu)$	
1	s	Time	
T	°C or K	Temperature	
ΔT	°C or K	Temperature difference	
V	m/s	Velocity	
w	m	Characteristic length (length or width or diameter)	
x	m	Length or distance	
Greek sym	ools		
Þ	1/K	Volumetric expansion coefficient	
δ	m	Thickness or gap width	
3		Emissivity	
P	kg/m ³	Density	
μ	N s/m ²	Dynamic viscosity	
Subscripts			
amb		Ambient	
c		Contact region	
f		Fluid	
U		Open space	
r		Radiation	
5		Surface	
		Wall	

	TABLE 6.6 Correlation for convective heat transfer	coefficients [11,15].	
	Mode of Convection	Correlation]
	Natural convection from an isothermal vertical surface	$h = C(\text{Ra})^* = C\left(\frac{k_f}{L}\right) \left(\frac{\rho_f^2 \beta_B C_p \ \Delta T \ L^3}{\mu_f k_f}\right)^*$	
		$C = 0.59, n = 1/4$ for $1 < \text{Ra} < 10^9$	
		$C = 0.10$, $n = 1/3$ for $10^9 < \text{Ra} < 10^{14}$	
	Natural convection from a vertical isoflux surface	$h = 0.631 \left(\frac{k_f}{L}\right) \left[\frac{C_{\mu}\rho^2 g\beta q^{*}H^4}{\mu k_f^2}\right]^{1/5}$	
	Natural convection on an isothermal horizontal surface	$h = C(\mathbf{Ra})^{*} = C\left(\frac{k_{f}}{L}\right) \left(\frac{\rho_{f}^{2}\beta_{g}C_{p} \Delta T L^{3}}{\mu_{f}k_{f}}\right)^{*}$	
		$C = 0.54$, $n = 1/4$ for $10^4 \le \text{Ra}_L \le 10^7$	
		$C = 0.15, n = 1/3$ for $10^7 \le \text{Ra}_L \le 10^{11}$	
	Forced convection on an isothermal flat plate	$h = C(\operatorname{Re})^{n} (\operatorname{Pr})^{1/3} = C \left(\frac{k_f}{L}\right) \left(\frac{\rho_f V L}{\mu_f}\right)^{n} \left(\frac{\mu_f C_{\rho}}{k_f}\right)^{1/3}$	
		Laminar: $C = 0.664$, $n = 1/2$	
		Turbulent: $C = 0.0296$, $n = 4/5$	
	Forced convection on an isoflux flat plate	$h = C(\text{Re})^n (\text{Pr})^{1/3} = C \left(\frac{k_f}{L}\right) \left(\frac{\rho_f V L}{\mu_f}\right)^n \left(\frac{\mu_f C_p}{k_f}\right)^{1/3}$	
		Laminar: $C = 0.453, n = 1/2$	
		Turbulent: $C = 0.0308$, $n = 4/5$	
	Laminar forced convection in a circular tube	$h = \frac{k_f}{D} \left(3.66 + \frac{0.0668 (D/L) \operatorname{Re}_D \operatorname{Pr}}{1 + 0.04[(D/L) \operatorname{Re}_D \operatorname{Pr}]^{2/3}} \right)$	
		$\operatorname{Re}_{D} = \left(\frac{\rho_{f} V D}{\mu_{f}}\right), \operatorname{Pr} = \left(\frac{\mu_{f} C_{p}}{k_{f}}\right) \operatorname{for} \operatorname{Re}_{D} < 2000$	
	Turbulent forced convection in a	$Nu = 0.023 \ Re_D^{0.8} \ Pr^{*} \ (Re_D > 2000)$	
5/5/2012	circular tube	n = 0.4 for heating	18
0.0.20.2		n = 0.3 for cooling	

Radiation Heat Transfer Indegrate Planck's Law $\int E_{\lambda}^{b} d\lambda \rightarrow Stefan-Boltzmann Law$ Black body $E^{b} = GTH \qquad G = 5.670 \times 10^{-8} \text{ W/m}^{2} \text{K}^{4}$ Stefan-Boltzmann constant Tabsolute temperature. Radiation heat transfer coefficient $h_{T} = \frac{q^{b}}{fA} / \Delta T = \frac{E^{b}}{\Delta T}$ In practice, energy radiated to another body & absorbed from other bodies. I2+1 82 MAZ La II-2 $\begin{aligned} &= E_1^b (\Delta A_1 \cos \theta) (\cos \theta_2 \Delta A_2) / \pi r^2 \\ &= E_2^b (\Delta A_2 \cos \theta_2) (\Delta A_1 \cos \theta_1) / \pi r^2 \end{aligned}$ 12/2-31 29

$$\begin{array}{c} k \text{ net heat } flux \text{ from surface } 1(S_{1}) = q_{1} = (\overline{J}_{1} - H_{1})A_{1} \\ = \overline{J}_{1}A_{1} - A_{1}A_{2}F_{2-1}\overline{J}_{2} \\ = \overline{J}_{1}A_{1} - A_{1}A_{1}F_{1-2}\overline{J}_{2} \\ = \overline{J}_{1}A_{1} - A_{1}(\overline{J}_{1} - \overline{c}_{1}\overline{c}_{1})/\ell_{1} \\ = \frac{c_{1}A_{1}F_{1}}{I-\overline{c}_{1}} + \overline{J}_{1}A_{1}(1-\frac{1}{1-\overline{c}_{1}}) \\ = \frac{c_{1}A_{1}F_{1}}{I-\overline{c}_{1}} + \overline{J}_{1}F_{1}} \\ = \frac{c_{1}A_{1}F_{1}}{I-\overline{c}_{1}} +$$

$$\begin{split} R_{1} &= \frac{1-\epsilon_{1}}{A_{1}\epsilon_{1}} \qquad R_{2} = \frac{1-\epsilon_{2}}{A_{2}\epsilon_{2}} \qquad R_{sr} = \frac{1}{A_{1}F_{1-2}} = \frac{1}{A_{2}F_{2-1}} \\ q_{1} &= \frac{J_{1} - J_{2}}{R_{sr}} \\ R_{1-2} &= \frac{(E_{1}^{5} - E_{2}^{5})}{(R_{1} + R_{sr} + R_{2})} = h_{r}A_{1}(T_{1} - T_{2}) \\ &\stackrel{(=)}{\leftarrow} (T_{1}^{4} - T_{2}^{4}) \end{split}$$
 $\frac{\mathscr{G}(T_{1}^{4}-T_{2}^{*})}{A_{1}(T_{1}-T_{2}) \leq R} = \frac{\mathscr{G}}{A_{1} \leq R} \left(T_{1}^{3}+T_{1}^{2}T_{2}+T_{1}T_{2}^{2}+T_{2}^{3}\right)$ Rrad = 1/hrad A 5/5/2012 33 ECE414/514 Electronics Packaging Spring 2012

Packaging Spring 2012

Thermophysical Properties for Heat Transfer Calculations Thermal Conductivities of Select Materials Material k(W/m°C) Aluminum Pure Dure docs 174 docs 174 docs 176 Berylium copper Brass 70 Cu-30 Zn Copper Pure Drawn wire Gold Iron wrought Kovar Lead Magnesium Silcon Sicel 1020 Tin Titalium Zinc Soft 1020 Tin Titalium Zinc Soft 1020 Tin Pure Soft 1020 Tin Pure Soft 1020 Tin Sicel 1020 Sicel 126 121 156 121 82.7 100 381 287 296 58.8 15.6 32.7 157 153 55.4 62.3 15.6 102 29.4 12.1 242 156 0.98 1.26 0.59 0.21 2.16 0.26 0.19 0.24 0.28 0.19 0.16 0.26 0.19 0.21 0.19 Silicone Teflon 5/5/2012 36 Air Water 0.026 0.658

Water at Sat	turation Pre	ssure								
Tempo K	erature T °C	Density (kg/m³)	$\begin{array}{c} \text{Coefficient} \\ \text{of Thermal} \\ \text{Expansion} \\ \beta \times 10^4 \\ (1/\text{K}) \end{array}$	Specific Heat ^{Cp} (J/kg·K)	Thermal Conductivity k (W/m·K)	Thermal Diffusivity α × 10 ⁶ (m ² /s)	Absolute Viscosity $\mu \times 10^{6}$ (N·s/m ²)	Kinematic Viscosity $v \times 10^{6}$ (m ² /s)	Prandtl Number <i>Pr</i>	$\frac{g\beta}{v^2} \times 10^{-9}$ (1/K·m ³)
273 293 313 333 353 373 473 573 <i>Source:</i> K. Rat	0 20 40 60 80 100 200 300 201 300	999.3 998.2 992.2 983.2 971.8 958.4 862.8 712.5 ook of Thermod	-0.7 2.1 3.9 5.3 6.3 7.5 13.5 29.5	4226 4182 4175 4181 4194 4211 4501 5694 and Charts, McC	0.558 0.597 0.633 0.658 0.673 0.682 0.665 0.564 Graw-Hill Book	0.131 0.143 0.151 0.159 0.165 0.169 0.170 0.132 Company, Ne	1794 993 658 472 352 278 139 92.3 w York, 1976.	$\begin{array}{c} 1.789\\ 1.006\\ 0.658\\ 0.478\\ 0.364\\ 0.294\\ 0.160\\ 0.128\end{array}$	13.7 7.0 4.3 3.00 2.25 1.75 0.95 0.98	2.035 8.833 22.75 46.68 85.09 517.2 1766.
5/5/2	2012			ECE414 Packag	1/514 Elect jing Spring	ronics 2012				37

nospheric ^I	Pressure								
	Density	Coefficient		Thermol	Thormal	Abaaluta	Kinomatia		
ature	Density	Expansion	Specific Heat	Conductivity	Diffusivity	Viscosity	Viscosity	Prandti	$\frac{g\beta}{2} \times 10^{-10}$
	0	$B \times 10^3$	C-	k	$\alpha \times 10^6$	$\mu \times 10^6$	$v \times 10^6$	Number	$\frac{1}{v^2}$ 10
°C	(kg/m ³)	(1/K)	(J/kg⋅K)	(W/m·K)	(m²/s)	(N·s/m ²)	(m ² /s)	Pr	(1/K·m³
0	1.252	3.66	1011	0.0237	19.2	17.456	13.9	0.71	1.85
20	1.164	3.41	1012	0.0251	22.0	18.240	15.7	0.71	1.36
40	1.092	3.19	1014	0.0265	24.8	19.123	17.6	0.71	1.01
60	1.025	3.00	1017	0.0279	27.6	19.907	19.4	0.71	0.782
80	0.968	2.83	1019	0.0293	30.6	20.790	21.5	0.71	0.600
100	0.916	2.68	1022	0.0307	33.6	21.673	23.6	0.71	0.472
200	0.723	2.11	1035	0.0370	49.7	25.693	35.5	0.71	0.164
300	0.596	1.75	1047	0.0429	68.9	39.322	49.2	0.71	0.0709
400	0.508	1.49	1059	0.0485	89.4	32.754	64.6	0.72	0.0350
500	0.442	1.29	1076	0.0540	113.2	35.794	81.0	0.72	0.0193
	10spheric ature °C 0 20 40 60 80 100 200 40 60 300 300 400 60 200 200 40 60 200 200 200 200 40 60 200 200 40 60 200 200 40 60 200 200 200 200 200 200 200 200 200	pospheric Pressure ature Density "C p 0 1.252 20 1.164 40 1.025 80 0.968 100 0.916 200 0.723 300 0.596 400 0.508	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	nospheric Pressure Coefficient of Thermal Expansion Thermal Specific Heat Conductivity p "C k p "C $\beta \times 10^2$ (kg/m ³) $f_{0} \times 10^2$ (1/K) $f_{0} \times 10^2$ (J/kg·K) Thermal Expansion 0 1.252 3.66 1011 0.0237 20 1.164 3.41 1012 0.0251 40 1.025 3.00 1017 0.0279 80 0.968 2.83 1019 0.0293 100 0.972 2.11 1035 0.0370 300 0.596 1.75 1047 0.0429 400 0.598 1.49 1059 0.445	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

т °С	°F	ρ (g / in. ³)	с _р (J / g °C)	μ (10 ⁻⁴ g / in. s)	v (in.² / s)	<i>k</i> (10 ⁻⁴ W / m °C)	Pr	β (10 ⁻³ /°C)	$g\rho^2 / \mu^2$ (10 ⁶ / in. ³)	$g\beta\rho^2/\mu^2$ (10 ³ /in. ³ °C)
- 18	0	0.0227	1.000	4.195	0.0187	5.803	0.73	3.916	1.12	4.38
0	32	0.0212	1.003	4.403	0.0209	6.168	0.72	3.661	0.899	3.29
19	50	0.0204	1.004	4.519	0.0220	6.374	0.72	3.528	0.812	2.90
38	100	0.0186	1.004	4.856	0.0259	6.945	0.72	3.216	0.569	1.83
66	150	0.0171	1.008	5.150	0.0301	7.473	0.72	2.952	0.446	1.36
93	200	0.0158	1.008	5.442	0.0344	8.000	0.72	2.729	0.324	0.885
121	250	0.0147	1.012	5.780	0.0392	8.440	0.71	2.538	0.260	0.674
149	300	0.0137	1:012	6.085	0.0441	8.968	0.71	2.370	0.195	0.462
177	350	0.0129	1.016	6.305	0.0491	9.495	0.70	2.214	0.161	0.366
204	400	0.0121	1.024	6.614	0.0544	9.979	0.69	2.094	0.128	0.269

I

	TABLE 9.1 Emissivity ε of differe	ent materials $T = 10$	0°C	
	Material	Condition		
	Alleghany metal	No. 4 polish	.13	
	Alleghany alloy No. 66	Polished	.11	
	Aluminum	Commercial sheet	.09	
	Aluminum	Polished	.095	
	Aluminum	Rough polish	.18	
	Brass	Polished	.059	
	Carbon	Rough plate	.77	
	Carbon, graphitized	Rough plate	.76	
	Chromium	Polished	.075	
	Copper	Polished	.052	
	Copper-nickel	Polished	.059	
	Iron	Dark gray surface	.31	
	Iron	Roughly polished	.27	
	Lampblack	Rough deposit	.84	
	Molybdenum	Polished	.071	
	Nickel	Polished	.072	
	Nickel-silver	Polished	.135	
	Paint, white	Clean	.79	
	Paint, cream	Clean	.77	
	Paint, black	Clean	.84	
	Paint, bronze	Clean	.51	
	Silver	Polished	.052	
	Stainless steel	Polished	.074	
	Steel	Polished	.066	
	Tin	Polished	.069	
	Tin	Commercial coat	.084	
	Tungsten	Polished coat	.066	
	Zinc	Commercial coat	.21	
	Fuzed quartz	1.96 mm thick	.775	
5/5/2012	Covex D (glass)	3.40 mm thick	.83	40
5/5/2012	Nonex (glass)	1.57 mm thick	.835	40
	Aluminum paint		.29	

	Ass	signment	#6	
Dally et a	l: 9.7 10.1	9.16 10.16	9.17 10.17	9.25 10.37
5/5/2012		ECE414/514 Electronics Packaging Spring 2012		44