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4.30 Three stress increments at a sequence of times (t,, ¢, t5) leading to a total strain v(t).
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Polymers do not creep indefinitely and
return fully to the initial conditions.
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4.31 Response of a viscoelastic solid to loading at 0 and unloading at t;.
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“relaxed” when t—o0
“unrelaxed” —elastic response

log t
;.1 Lénear viscoelca?tl? creep: (a) constant stress o applied at (=0 leads 1o time-
lependent strain (t); (b) a higher stress o, applied at =0 leads to time dependent i
. strain
4/29/2012 ¥2(1); (c) from (a) and (b} the strains at t,, ¥(t,), and at time t,, ¥(t,), are linear in the stress: 5
(d} the observed dependence of J(t) (eqn 4.3) on log t through one complete relaxation. J,
and Jg are the unrelaxed and relaxed compliances respectively Y

4.2 Isochronals taken at t, (see Figure 4.1) after the initiation of the creep experiment,
y(t,), and at t,, y(t,). The diagram illustrates the transition from linear to non-linear
viscoelastic behaviour. Note that this is not the y—o plot that would be obtained in a
conventional stress—strain test, the data are taken from creep experiments at different
stresses.
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4.4 Shear compliance J(t) of linear polyethylene at different temperatures in the region of
the a-relaxation. Measurements are taken at times between 0.8 and 2000 s. The data are
plotted against log t, as a plot against ¢t will not reveal the significant differences in the shape
of the curves at different temperatures (after McCrum and Morris).
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“relaxed” when t—o0

au “unrelaxed” —elastic response

log t

4.5 Linear viscoelastic stress relaxation: (a) constant strain vy, applied at t=0 leads 1o a

time-dependent stress (t); (b) a higher strain v, applied at =0 leads to time-dependent 9
4/29/2012 stress ay(t); (c) from (a) and (b) the stresses at time t,, o(t,), and at time t,, ol(t,), are

linear in the strain; (d) the observed dependence of G(t) on log ¢ through one complete

relaxation. G, and Gy, are the unrelaxed and relaxed moduli, respectively

Linear

4.6 Isochronals taken at t, (see Figure 4.5) after the initiation of the stress relaxation
experiment, o(t,), and at t,, o(t,). The diagram illustrates the transition from linear to
non-linear behaviour. Note that this g~y plot cannot be obtained in a conventional
stress—strain experiment: it must be obtained by a series of stress relaxation experiments, as
illustrated in Figure 4.5.
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4.7 Stress relaxation modulus observed in tension E(t) of polyisobutylene at different
temperatures in the region of the glass-rubber relaxation (7; = —80°C). At —83°C at short
time, E(t) approaches asymptotically the modulus of the glass at —40°C at long time, E(t)
4/29/2012  approaches asymptotically the modulus of the rubber. The relaxation is centred in the region 11
of —66°C. Note the immense reduction in E(t) of over 3 decades in a temperature rise of

43°C: this behaviour is typical of amorphous polvmers at the glass-nibber relaxation

Time & Freguency Responses
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4.13 The spring and dashpot. The strain in the spring is y=J,o; the strain rate (dy/dt) =
Jy(de/dt). The strain in the dashpot cannot be related simply to the stress (it depends on the
stress history). The strain rate in the dashpot is proportional to the stress and is (dy/dt) = o/ 7.
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4.14 The Zener model (or standard linear solid). The model may be represented as a spring
in series with a Kelvin model, as in (a), or as a spring in parallel with a Maxwell model, as in
(b). The significant properties inherent in the Zener model include: (i) two time constants, one
for constant stress 7, and one for constant strain . (i) an instantaneous strain at t=0 when
subject to a step-function stress; and (i) full recovery following removal of the stress. For the
Kelvin and Maxwell models, see Problem 4.8.
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4.15 Solution to the Zener model for a creep experiment (J(t)) or for a stress-relaxation
experiment (G(t)). Mode! with J, =1 GPa™~ ', Jg/J, =10, and 7,=100 s. Note that from eqgn
446 7,=10s.
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Frequency Response

A 0=0,sin(wt+5)

NN Y=Y, Sin wt

4.8 Vector representation of an alternating stress leading an alternating strain by phase

angle §.
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4.16 Solution to the Zener model for a dynamic experiment. Model with J,=1 GPa™',
Jg/Jy =10 and 7,=100 s. Note that maxima occur: iln J at w=77'=001rads"';in G” at
w=7""=01rads” " andintans at w=(7,7,)" 2=0.0316 rad s~ .
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4.10 Frequency dependence of the dynamic shear modulus G'(w) of polyisobutylene at
different temperatures in the range —45°C to +100°C. This relaxation is the glass-to-rubber
4/29/2012 relaxation: it is observed here centred in the region of =10°C, well above the glass transition 24

(—80°C) because of the high frequency of observation. The measurements were by forced
oscillation (after Fitzgerald, Grandine, and Ferry).
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4/29/2012 417 Distribution of n Kelvin relaxation elements 7,,7,,...,7....,7,_ 1,7, Each element is 25
stressed by the stress oy, which also acts on the instantaneous compliance Jj,. The strains in
the elements all add to give the total strain.
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4.18 The distribution of relaxation times plotted against + from the model of Figure 4.17.
The element of area at , j() dr, represents the strength of the relaxation at 7. The integrated
area (from eqgn 4.64) equals Jg —Jy.
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4.'19. The distribution of relaxation times g(r) for the model of Problem 4.12; a continuous
distribution of Maxwell elements. The element of area at 7, g(7) dr, represents the strength of

the relaxation at . The integrated area (from eqn 4.67)
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Temperature

are indicated (s—e—e—e—e) (after Wolf).
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4.21 Dependence of the shear modulus on temperature for three representative engineer-
ing polymers: natural rubber (cross-linked); PVC (essentially amorphous and not cross-linked);
and nylon 6 (crystalline). The temperatures at which these polymers are used in technology
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4.20 |lllustration of the time—temperature shift (egn 4.72)
and 7, when plotted against log ¢ are simply displaced ho
factor (eqn 4.68). The small temperature dependence of J
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Monomer(s) A Aand B B
Class of Homopolymer Random lymer B
polymer copolym lock copolymer Graft copolymer Homapolymer
Chemical Name Poly A Poly (A-co-B) Poly {A-b-B) Foly (A-g-B) Poly B
Schematic
chemical
structure %
Exampi Botbatad: Poly b Poly (butadiene-b Poly (butadiene-g Polysty
styrene) styrene) styrena) .
<} 1 in in r‘L i ’\ . \
n \ ] 5 ]
8 g HEE ﬁ g L
Variation of
ar . (. L | 1 1L L
andlogdfc)\ -100 0  +100 | -100 0 +100 | -100 0 100 060 00 | -100 o +ito
. TrC) TrC) TrC) TeC) TrC)
temperature
One phase One phase Two phase Two phase One phase
A A A A A A
1 L J L L i 1 1 i
-100 0 4100 -100 0 +100 —160 6 +100 —|$u ] 4150 —nJ)o I;l +100
TrC) TrC) Tre) TrC) TrC)
4.35 The mechanical spectra (logG’ and A at ~1 Hz versus temperature) for copolymers (random, block, and graft).
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4/29/2012 432 (a) A constant strain rate leads to a non-linear stress; (b) the definition of E(t), the 32

mean modulus; and (c) increasing the strain rate (k) increases the slope of the stress—strain

Cunve,
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4.28 The origin of physical ageing in an amorphous polymer. After quenching to a
\t/irlzperat?re Ibelow Tq (but above T;, the temperature of the highest secondary relaxation), the
YOIUME slowly contracts: the movement is towards the equilibrium. which is th :

v —T line for the liquid (after Struik). ‘ © e exrapoiated
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4.29 Tensile compliance of PVC at 20°C. The specimen was quenched from 90°C (20°C
above T;) to 20°C, and kept at 20°C for 4 years. At specific times (t,) after the quench: 0.03,
0.1, 0.3 days, etc., the compliance was determined. Note the systematic shift of the creep
curves. This effect is termed physical ageing (see also Figure 4.28) (after Struik).
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Assignment #6

1. A straight rod of solid polymer of length 1m and diameter
10mm is linearly viscoelastic with tensile creep
compliance

D =2 — exp(-0.1t) GPa!
where tis in hours. The rod is suspended vertically and a

10kg mass is hung from it for 10 hours. Find the
change in length of the rod.

After 10 hours, the 10kg mass is removed. Find the
strain remaining in the rod after a further 10 hours.

Dally et al: Problem 12.1
Dally et al: Problem 12.9
Dally et al: Problem 12.11
Dally et al: Problem 12.26

no

o gk w
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