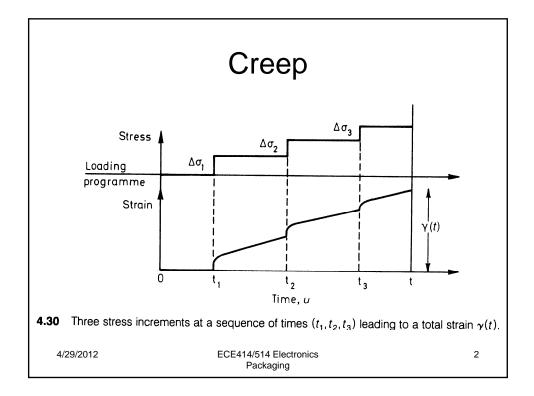
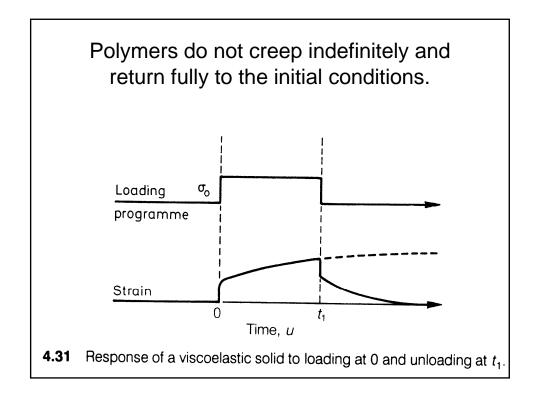
ECE414/514 Electronics Packaging Spring 2012 Lecture 10 Mechanical C Viscoelasticity

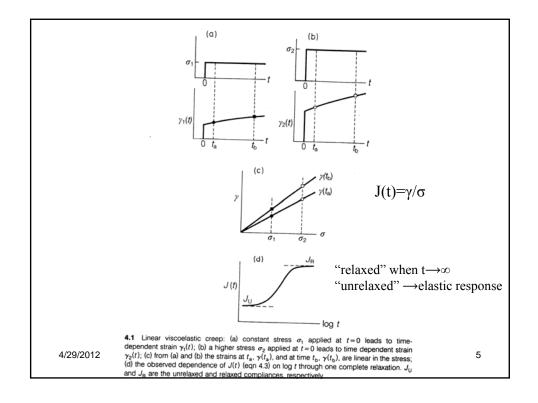
James E. Morris Dept of Electrical & Computer Engineering Portland State University

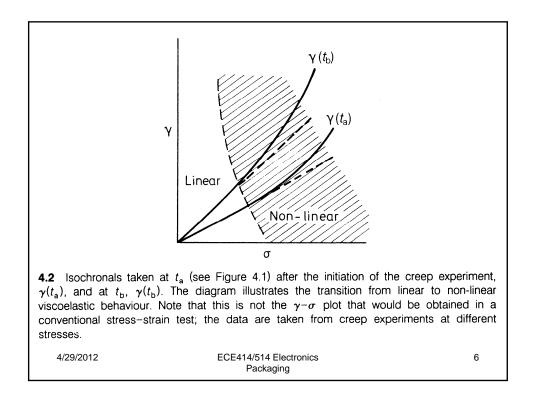


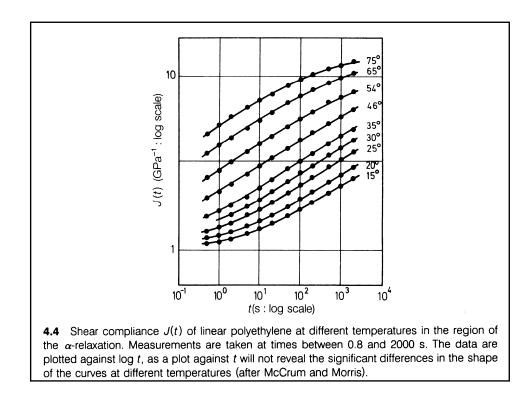


Stress = 5 and Strain = 7
() Apply stresses 5, and 52
For any time t
$$\frac{S_1(t)}{G_1} = \frac{S_2(t)}{G_2} = J(t)$$

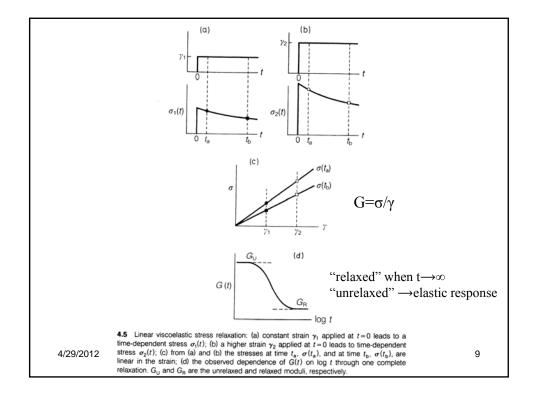
 $J(t) = \frac{Creep}{1 \text{ comptiance}} = J(t)/5$
() Apply strains 7, and 82
For any time t $\frac{G_1(t)}{S_1} = \frac{G_2(t)}{S_2} = g(t)$
 $g(t) = \text{stress-reloxation modulus} = 6(t)/8$
() - creep is apply stress, $T(t)$ increases
(2) - stress relaxation is. define a strains
 $4/29/2012$ ECE414/514 Electronics 4

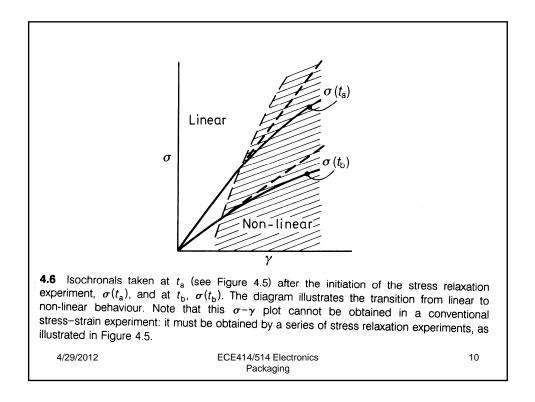


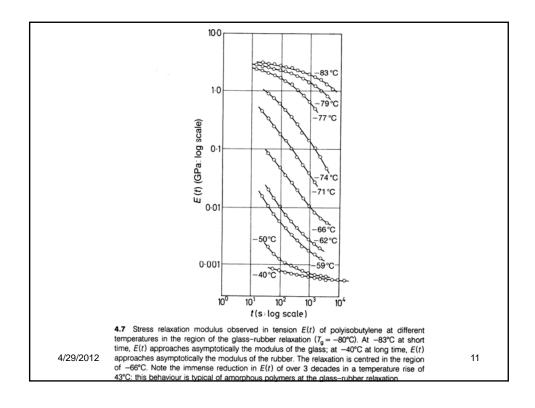


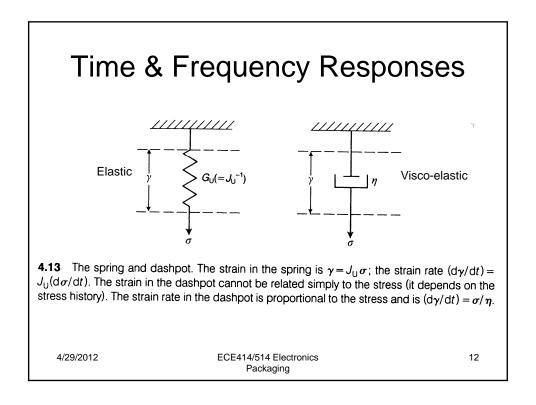


VISCOELASTICITY CREEP ---- Molecular rearrangement Creates "back stress" which leads to full recovery. If applied stress for long time, ٩. back stress gincreases to SA as t -> 00, at which time 5-63-0 and no further extension. When GA removed (=0) GB restores original state. ECE414/514 Electronics 4/29/2012 8 Packaging

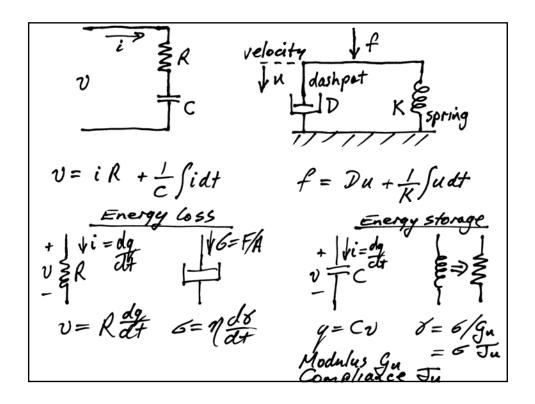


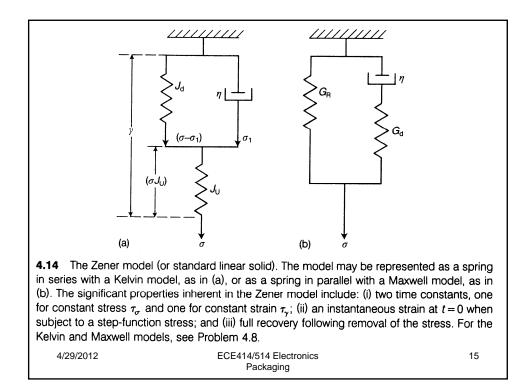


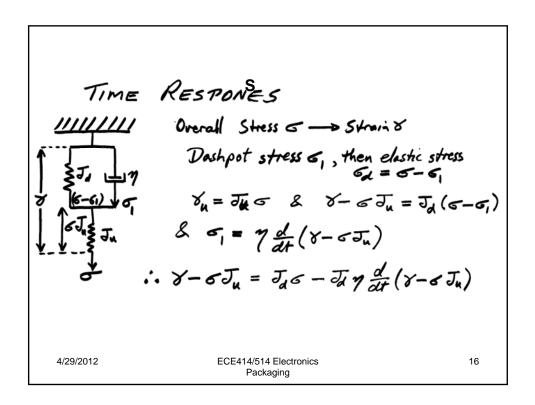




ANALOGS Mechanical DKfu M X * $\lambda - flux linkage = \int v dt$ 4/29/2012 ECE414/514 Electronics 13 Packaging







Note: 3ener model includes 2 characteristic time constants
Constant stress
$$\rightarrow Z_{g}$$

Constant stroin $\rightarrow Z_{g}$
 $J\eta$ units: Compare $J \rightarrow C$ & $\eta \rightarrow R$
 So $J\eta \rightarrow trme constant Z$
Applied stress $c \rightarrow write J_{d}\eta = Z_{g}$
 So $X = c (J_{u} + J_{d}) - Z_{c} \frac{dX}{dt} + Z_{g}J_{u} \frac{dc}{dt}$
write $J_{u} + J_{d} = J_{R}$
 $\cdot \cdot X + Z_{g} \frac{dX}{dt} = cJ_{R} + Z_{g}J_{u} \frac{dc}{dt}$
 $\rightarrow \frac{1}{J_{R}} \left[X + Z_{g} \frac{dX}{dt} \right] = c + Z_{g} \left[\frac{J_{u}}{J_{R}} \right] \frac{dG}{dt}$
 $= c + Z_{g} \frac{dG}{dt}$
 $since Z_{g} = Z_{g} = J_{R} = S_{u} = (J_{d} + J_{u})/J_{u} = J_{d}\eta/\eta J_{d}J_{u}/(J_{d} + J_{u})$

$$CREEP \qquad Apply constant stress = +t=0$$

$$\therefore = \frac{ds}{dt} = 0 \text{ and } y_{+} = \frac{ds}{dt} = J_{R}e_{0}$$

$$\rightarrow x(t) = J_{R}e_{0} - e_{0}\left[J_{R}-J_{U}\right]e_{N}p - \frac{t}{t_{e}}$$

$$= J_{R}e_{0}\left[I-e_{N}p-\frac{t}{t_{e}}\right] + J_{U}e_{N}p - \frac{t}{t_{e}}$$

$$= J_{R}e_{0}\left[I-e_{N}p-\frac{t}{t_{e}}\right] + J_{U}e_{N}p - \frac{t}{t_{e}}$$

$$= J_{R}e_{0}\left[I-e_{N}p-\frac{t}{t_{e}}\right] + J_{U}e_{N}p - \frac{t}{t_{e}}$$

$$= J_{R}e_{0}\left[J_{R}-J_{U}\right]\left(I-e_{N}p-\frac{t}{t_{e}}\right)g$$

$$= t_{0}\left[J_{R}-J_{U}\right]\left(I-e_{N}p-\frac{t}{t_{e}}\right)g$$

$$= t_{0}\left[J_{R}-J_{U}\right]\left(J_{R}-J_{U}\right)\left(I-e_{N}p-\frac{t}{t_{e}}\right)g$$

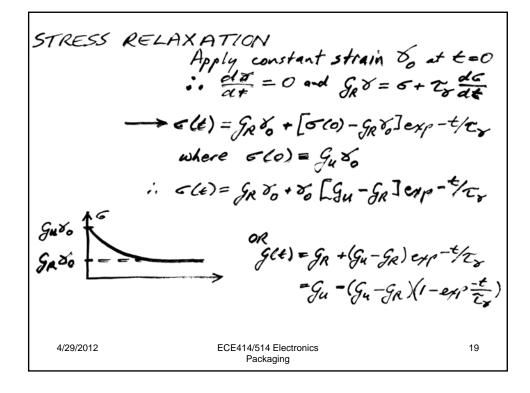
$$= t_{0}\left[J_{R}-J_{U}\right]\left(J_{R}-J_{U}\right)\left(J_{R}-J_{U}\right)\left(J_{R}-\frac{t}{t_{e}}\right)g$$

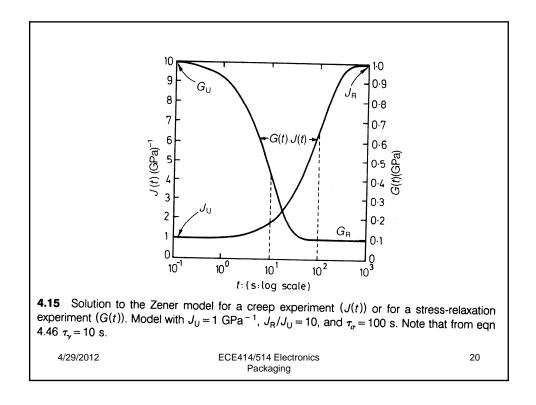
$$= t_{0}\left[J_{R}-J_{U}\right]\left(J_{R}-J_{U}\right)\left(J_{R}-J_{U}\right)\left(J_{R}-\frac{t}{t_{e}}\right)g$$

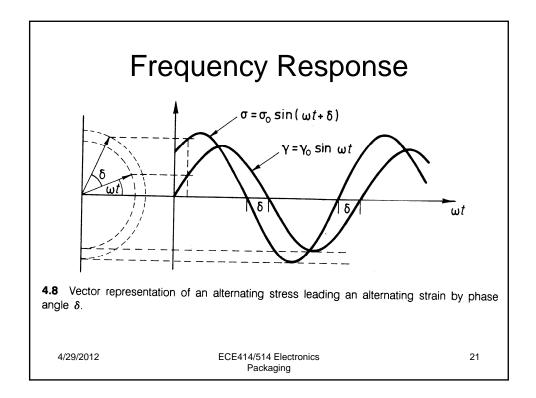
$$= t_{0}\left[J_{R}-J_{U}\right]\left(J_{R}-J_{U}\right)\left(J_{R}-J_{U}\right)\left(J_{R}-\frac{t}{t_{e}}\right)g$$

$$= t_{0}\left[J_{R}-J_{U}\right]\left(J_{R}-J_{U}\right)\left(J_{R}-J_{U}\right)\left(J_{R}-\frac{t}{t_{e}}\right)g$$

$$= t_{0}\left[J_{R}-J_{U}\right]\left(J_{R}-J_{U}\right)\left(J_$$







FREQUENCY RESPONSE

$$\frac{1}{J_{R}} \left[\mathcal{F} + \mathcal{T}_{S} \frac{d\mathcal{F}}{d\mathcal{F}} \right] = \mathcal{F} + \mathcal{T}_{S} \frac{d\mathcal{F}}{d\mathcal{F}}$$
write

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t + \delta)$$

$$\mathcal{F} = \mathcal{F}_{0} \exp j (\omega t$$

