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Abstract   

A new class of non-totally symmetric functions which
can be represented as  simple regular symmetric arrays
without redundancy is identified. Regular circuits are
becoming crucialy important for deep submicron
technologies, which needs new layout approaches to fully
utilized their potential. The new class of functions contains
the classes of totally symmetric and totally symmetric with
mixed polarities functions Two circuit implementations are
proposed, one especially aimed on low-power applications.
Generating such functions with a simple method is also
described.

I. INTRODUCTION

Representing a function as a regular array has always
been an attractive solution especially when predictability of
the area and delay was important. The usual drawbacks of
regular arrays are large layout sizes and delays compare to
non-regular representations.  Newly developed regular arrays,
Psudo-Symmetric Binary Decision Diagrams (PSBDDs) [1],
have very compact layouts and their delays are optimized for
deep-submicron technologies. They can be directly mapped
to a two-dimensional layout without any routing. These
diagrams are based on OBDDs [2, 3] for totally symmetric
functions which are regular two-dimensional structures. The
area and delay are directly proportional to the number of
levels in the diagrams, which for totally symmetric
functions is equal to the number of function’s variables. In
general, any arbitrary Boolean function can be represented as
a PSBDD, however, for non-totally symmetric functions
some variables have to be used multiple times as
decomposition variables. This increases a number of levels
in a PSBDD and, therefore,  also increases the area and
delay. In this paper we show that there exists a larger class
of functions, which includes a class of totally symmetric
functions, which can be represented as PSBDDs without any
repeated variables.

The remainder of this paper is organized as follows.
Basic terminology and definitions associated with decision
diagrams, symmetric functions and symmetric variables are

discussed in section 2. Section 3 discusses simple regular
arrays and Pseudo-Symmetric Binary Decision Diagrams are
presented in Section 4. The class of with pseudo-symmetric
functions associated as well as the method for their
generation are presented  in Section 5. Conclusion is given
in section 6.

I I . PRELIMINARIES

Our approach is based on symmetric networks [5] and
Binary Decision Diagrams, BDDs. Let us recall some
background information which will be used to explain our
approach. Binary Decision Diagrams are created by iterative
application of Shannon decomposition theorem to arbitrary
Boolean functions.
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where fxi, and fxi' are called positive and negative cofactors
of function f in respect to variable xi,, respectively.
Definition 1 .  A switching function of n variables f(x1,
x2, x3 ...xn) is called symmetric or (totally symmetric) if and
only if it is invariant under any permutation of its variables.
In symmetric functions we assume that variables of
symmetry can be of both polarities.

It means that function f (x1, x2, x3, x4) can be totally
symmetric in variables(x1, x2, x3, x4) or in any possible
combination of the variable polarities like for example (x1’,
x2, x3’, x4) or (x1, x2’, x3’, x4).

Symmetry relation between variables can also be
determine by comparing cofactors for each par of variables in
a function. For any pair of variables xi and xj, there are four

cofactors, namely, fxixj, fxixj', fxi'xj
, fxi'xj'. A function is

symmetric in these two variables if any two of the four
cofactors, with the choice of negating one of them, are
equivalent.  Two types of symmetry which are used in
defining symmetric functions are given below [4].



Definition 2. A unction f  exhibits a non-equivalent
symmetry (NE-symmetry) in variables xi and xj, denoted as

xiNExj or {xi, xj}({x i ',xj '}),  if fxixj' = fxi'xj
..

Definition 3. A function f exhibits an equivalent
symmetry (E-symmetry) in variables xi  and xj , denoted as

xiExj or {xi, xj '}({x i ', xj}), if fxi'xj' = fxixj
..

III. SIMPLE REGULAR ARRAYS

If two variables exhibit non-equivalent symmetry, the
function’s two cofactors, fxi'xj and fxixj', (in respect to these

two variables) are equal and can be represented as one node in
a planar drawing of the function OBDD, as shown in Fig. 1.
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Figure 1. Use of isomorphic cofactors in  Shannon
expansion.
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Figure 2. Use of isomorphic cofactors in
Flipped Shannon expansion.

In Fig. 1. and Fig 2. black nodes represent the
equivalent nodes. We assume that nodes in OBDDs,
representing the Shannon decomposition, are always drawn
such that the positive (true) cofactor is drawn as the right
child and the negative (false) cofactor is drawn as the left
child of the parent node. Therefore, in order to take advantage
of the equivalent symmetry a flipped Shannon expansion,
which is shown in Fig. 2., where cofactors are drawn in
opposite direction compared to the Shannon node, is
introduced.  If a Boolean function is totally symmetric with
only non-equivalent symmetries holding between its
variables, then its OBDD can be drawn as shown in Fig.3a.

The OBDD there has a desired structure, regular and with
only neighbor-to-neighbor connections. Decomposition
variables are assigned to long range busses. Such structure
can be directly mapped to a two-dimensional array of
multiplexers, shown in Figure 3b, with no placement or
routing necessary.
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Figure 3.  OBDDs for a totally symmetric function with

only positive polarities.
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Figure 4.  Regular array for symmetric functions with
four symmetric variables of only positive polarities.
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Figure 5. Regular array for symmetric functions with
four symmetric variables of mixed polarities.

All nodes in Fig. 4. represent Shannon
decomposition. Leave nodes indicated by L i represent
planes of symmetries and can assume values 0 or 1. In
general, if only non-equivalent symmetries are considered,
the totally symmetric function will have all symmetric
variables in positive polarities and regular structures can
be represented with only Shannon (S) decomposition
nodes as shown in Fig.4. In the case of totally symmetric



functions with mixed symmetries, where both polarities
are allowed, regular diagrams for these functions can be
represented with some levels with only Shannon (S)
nodes for positive polarity variables, and other levels
with flipped Shannon nodes for negative polarity
symmetric variables, as shown in Fig 5. In both cases,
we assume one variable per level and one type of the
decomposition per level. It means that on the same level
we can have only S type nodes or only fS type nodes.
Such array can be realized with two types of muxes with
inverse connections to two inputs.

IV . PSBDDs

The regular OBBD for a totally symmetric structure is
a result of merging together isomorphic adjacent nodes.
Unfortunately, not all functions are totally symmetric.
Therefore, the merging idea has been extended for the case
of non-isomorphic nodes through the Join-Vertex operation
introduced in [1]. The underlined idea of the Join-Vertex
operation using the BDD and the PSBDD representations is
shown in Fig. 6.
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Figure 6. Generating a PSBDD with Join-Vertex
operation

The penalty to be paid is the reintroduction of the
expansion variables back into the function. The
reintroduction of a variable makes it necessary to use the
same expansion variable more than once which increases the
number of levels.  Such diagrams are called PSBDDs with
repeated variables and are discussed in details in [6]. The
delay of such structures is proportional to a number of levels
in a diagram, which is always larger than a number of
function variables. A number of variables which have to be
repeated depends very strongly on an order of decomposition
variables and various order optimization algorithms were
developed [6].
Definition 4 .  Pseudo Symmetric Binary Decision
Diagram is a Binary Decision Diagram where any two
geometrically-adjacent nodes on the same level of

decomposition are represented as one node, and therefore the
number of nodes on each level is equal or smaller than the
decomposition variable number associated with that level. A
node in a PSBDD represents a multiplexer operation on its
two inputs.
Theorem 1 .  Any totally symmetric function  can be
represented as a Pseudo-Symmetric Binary Decision Diagram
without repeated variables.
Theorem 2 .  An arbitrary Boolean function can be
represented as a Pseudo-Symmetric Binary Decision Diagram
with repeated variables.
Definition 5 . A Pseudo-Symmetric Decision Diagram
without Join-Vertex operations (no repeated variables) is
called Simple.
Lemma 1 .  A totally symmetric Boolean function f with
only non-skew non-equivalent symmetry can be represented
as a Simple Pseudo-Symmetric Binary Decision Diagram
with all nodes representing Shannon expansion.
Lemma 2 .  A totally symmetric Boolean function f with
mixed polarity, non-skew non-equivalent or equivalent
symmetries (N1 or N2), can be represented as a Simple
Pseudo-Symmetric Binary Decision Diagram with any
permutation of levels of nodes representing Shannon
expansion, and levels of nodes representing flipped Shannon
expansion.

V . PSEUDO-SYMMETRIC FUNCTIONS

Now, we show that some functions which had to be
represented with repeated-variable PSBDDs can be
represented as PSBDDs without repeated variables by
relaxing one of the restrictions in the PSBDD representation
and implementation. We allow both Shannon and flipped
Shannon decompositions to be present on the same level as
shown in Fig. 7.  Based on that we define a larger class of
functions which can be represented by regular diagrams,
Pseudo-Symmetric Binary Decision Diagram with no
repeated variables, Simple PSBDDs.  This reduces delay and
area of the function representation. Such regular arrays can
be represented as arrays of multiplexers or as a pseudo-
symmetric network of pass transistors.
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Figure 7. Simple Pseudo-Symmetric Binary Decision
Diagram for psudo-symmetric functions.



Generating functions which belong to these new classes
can be done using their representation as simple regular
arrays. All classes can be generated systematically, by
creating a diagram which represent a specific class of
functions like for example pseudo-symmetric functions,
shown in Fig. 7.  We assign a value of 0 or 1 to each of the
pseudo-symmetric planes, L k, and for all possible
permutaions we generate 2n-2 functions (totally symmetric
functions), by including all possible permutations of
variables polarities 2n, totally symmetric functions with
mixed polarities are generated.  Next, we allow all
permutation of feasible expansions (Shannon and flipped
Shannon) 2n2n-1...22, to generate all pseudo-symmetric
functions.

Table 1.

var
Symm.
Fun.

Symm.
Fun.
Mixed

Pseudo-
Symm.
Fun.

Total
Fun

2  22+1 -2 (22+1 -2) 22  >16 (22+1 -2) 24  >16 24

3  23 +1 -2 (23+1 -2) 23 ≈ 27 (23+1 -2) 2325 ≈ 212 28

4  24+1 -2 (24+1 -2) 24  ≈ 29 (24+1 -2) 2429 ≈ 218 21 6

5  25 +1-2 (25+1 -2) 25  ≈ 211 (25+1 -2) 25214 ≈ 225 23 2

6  26+1 -2 (26+1 -2) 26  ≈ 213 (25+1 -2) 25219 ≈ 230 26 4

In Table 1. we present estimated numbers of functions
which belong to the different classes of functions discussed
in this paper. The number of variables is given in column
one and the number of functions which belong to the class
of totally symmetric functions is given in column two.
Column three gives the number of totally symmetric
functions with mixed polarities, and column four the
number of newely defined pseudo-symmetric functions. The
total number of functions for different number of variables is
given in column five. As can be observe all functions on up
to 4 variables belong to some of the classes of symmetric or
pseudo-symmetric functions. For more than five variables a
number of pseudo-symmetric functions, defined in this
paper, is smaller than the total number of completely
specified functions, but still relatively large. Furthermore,
we can extend the class of pseudo-symmetric functions by
adding single-variable symmetries and constant cofactors [7].

VI . CONCLUSION

Identification of the extended classes of functions which
can be represented as regular simple diagrams, without
repeated variables, has been the major step in making these
diagrams practical for real life functions. In addition, a
function decomposer can be used, as a preprocessor, to
decompose large functions  into smaller functions with the
regularity property. The delay of a circuit designed as a
PSBDD without repeated variables cannot be larger than a

unit delay of a cell used for its implementation (for example
a multiplexer) multiplied by a number of function’s
variables. So, such calculated delay can be used as the upper
limit for the circuit delay. To decrease the delay we can cover
these regular diagrams with cells from the designated cell
library while maintaining local connectivity. Such procedure
allows us to predict very accurately the upper limits on area,
power and delay during a logic synthesis step, which is
much before the layout of the design  is created.

In addition, for future three-dimensional IC structus the
importance of local connections cannot be underestimated. A
layout design, relative positions of gates and wires, is
known before the layout is completed. The main advantages
of these various simple regular diagrams are localized
connections, predictable delay, and no placement or routing
required. In addition, a known, in a pre-layout phase,
interconnection structure can be used to predict power
dissipation associated with wires. Methods for generating
such simples regular pseudo-symmetric diagrams for
unknown functions by utilizing all the symmetry relations
are currently being developed. Our experiments on MCNC
benchmark functions are very promising.
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