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Abstract

A new class of non-totally symmetrfanctionswhich
can be representecas simple regular symmetric arrays
without redundancyis identified. Regular circuits are
becoming crucialy important for deep submicron
technologieswhich needsnew layout approacheso fully
utilized their potential. The new class of functi@muntains
the classes of totally symmetric and totally symmetric with
mixed polarities functions Two circuit implementaticere
proposed, one especially aimed low-power applications.
Generatingsuch functions with a simple methodis also
described.

I. INTRODUCTION

Representing function as a regular array has always
been amttractivesolution especiallywhen predictability of
the areaand delay was important. The usual drawbacksof
regulararraysare large layout sizesand delays compareto
non-regular representations. Newly developed regutays,
Psudo-Symmetric Binary Decision DiagraffsSBDDs)[1],
have very compact layouts and their delayesoptimizedfor
deep-submicrotechnologiesThey can be directly mapped
to a two-dimensionallayout without any routing. These
diagramsare basedon OBDDs [2, 3] for totally symmetric
functions which areegulartwo-dimensionaktructures.The
areaand delay are directly proportionalto the number of
levels in the diagrams, which for totally symmetric
functions isequalto the numberof function’s variables.In
general, any arbitrary Boolean function darepresentecs
a PSBDD, however, for non-totally symmetric functions
some variables have to be used multiple times as
decompositiorvariables.This increases numberof levels
in a PSBDD and, therefore, also increasesthe area and
delay. In thispaperwe show that thereexists a larger class
of functions, which includesa classof totally symmetric
functions, which can be represented as PSBDDs witiayt
repeated variables.

The remainderof this paperis organizedas follows.
Basicterminology and definitions associatedvith decision
diagrams symmetricfunctionsand symmetricvariablesare

discussedn section2. Section3 discussessimple regular
arrays and Pseudo-SymmetBmary DecisionDiagramsare
presented in Section Zhe classof with pseudo-symmetric
functions associatedas well as the method for their
generation are presenteith Section5. Conclusionis given
in section 6.

II. PRELIMINARIES

Our approachis basedon symmetric networks[5] and
Binary Decision Diagrams, BDDs. Let us recall some
backgroundnformation which will be usedto explain our
approach. BinanpecisionDiagramsare createcby iterative
applicationof Shannondecompositiortheoremto arbitrary
Boolean functions.

Any switching functiorf(x | X,,... , >h) can be
expressed as
(X, Xy s X) = X o FOX0 Xoen X0 Ly X0 X)) + X0 f(
Xl’ X2' Xl-l’ 0' )$+1’ "Xn)
or
f= Xi.fxi+ Xi‘ ° in'

wherefx,, andfx;' are called positive and negativecofactors
of functionf in respect to variablr,, respectively.
Definition 1. A switching function of n variablesf(x,,

X5, %5 ...%,) IS called symmetric or (totally symmetritf) and
only if it is invariant under any permutation of its variables.
In symmetric functions we assumethat variables of
symmetry can be of both polarities.

It meansthat functionf (X, X,, X5, X,) can be totally
symmetricin variablegx;, X,, X3, X,) or in any possible
combination of the variablpolaritieslike for example(x,’,

Xoy X3’y X4) OF (X4, X', X3/, Xy)-

Symmetry relation between variables can also be
determine by comparing cofactors for each par of variables
a function. For any pair of variablesandxj, thereare four
cofactors,namely,fxixj, fxixj': fxi'xj, fxi‘xj'- A function is
symmetricin thesetwo variablesif any two of the four
cofactors,with the choice of negatingone of them, are
equivalent. Two types of symmetry which are usedin
defining symmetric functions are given below [4].
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Definition 2. A unctionf exhibits a non-equivalent The OBDD there has a desiredstructure,regular and with
symmetry (NE-symmetry) in variablesandyj, denoted as only neighbor-to-neighbor connections. Decomposition
XiNEx or {xj, 5}({xj '%'}), if inXj. :fxi-Xj__ varlablesgreas&gnedo long rangebu;ses.$uch structure
Definition 3. A function f exhibits an equivalent ~ Can be directly mappedto a two-dimensionalarray of
symmetry(E-symmetry)in variablesx; and xj, denotedas multiplexers, shownin Figure 3b, with no placementor

; , . routing necessary.
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If two variablesexhibit non-equivalentsymmetry, the
function’s two cofactorsf,xi-xj andfxixj-, (in respectto these
two variables) are equal and can be represented as one node i
a planar drawing of the function OBDD, as shown in Fig. 1.
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S h —® S b Figure 3. OBDDs for a totally symmetric function with
C/ only positive polarities.
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Figure 1.Use of isomorphic cofactors in Shannon
expansion.
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Figure 4. Regular array for symmetric functions with
four symmetric variables of only positive polarities.

a Shannon
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9= fap = fap Equivalent symmetry

Figure 2.Use of isomorphic cofactors in
Flipped Shannon expansion.

In Fig. 1. and Fig 2. black nodes representthe Figure 5 Regular array for symmetric functions with
equivalent nodes. We assumethat nodes in OBDDs, four symmetric variables of mixed polarities.
representinghe Shannondecompositionare always drawn
suchthat the positive (true) cofactoris drawn as the right Al nodes in Fig. 4. represent Shannon
child andthe negative (false) cofactoris drawn as the left decomposition.Leave nodesindicated by L' represent

child of the parent node. Therefore, in order to take advantaggyjanesof symmetriesand canassumevalueso or 1. In
of the equivalentsymmetry a flipped Shannonexpansion,  general, if only non-equivalent symmetries are considered,

which .is showpin Fig. 2., where cofactorsare drawn i.” the totally symmetricfunction will have all symmetric
opposite direction comparedto the Shannon node, is variablesin positive polaritiesandregularstructurescan
introduced. If a Booleafunctionis totally symmetricwith be representedwith only Shannon (S) decomposition
only non-equivalent symmetries holding between its nodes as shown in Fig.4. In the case of totally symmetric

variables, then its OBDD can ldeawnas shownin Fig.3a.



functionswith mixed symmetrieswhereboth polarities
areallowed, regulardiagramsfor thesefunctions can be
representedvith some levels with only Shannon (S)

nodesfor positive polarity variables, and other levels
with flipped Shannon nodes for negative polarity
symmetricvariables,as shownin Fig 5. In both cases,
we assumeone variable per level and one type of the
decomposition per level. It meattsat on the samelevel

we canhaveonly S type nodesor only fS type nodes.
Such array can be realized withio typesof muxeswith

inverse connections to two inputs.

IV.PSBDDs

The regular OBBD for &otally symmetricstructureis
a result of merging togetherisomorphic adjacentnodes.
Unfortunately, not all functions are totally symmetric.
Therefore, thanergingideahasbeenextendedor the case
of non-isomorphic nodes through thein-Vertexoperation
introducedin [1]. The underlinedidea of the Join-Vertex
operation using the BDD and the PSBDD representations is
shown in Fig. 6.
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Figure 6 Generating a PSBDD with Join-Vertex
operation

The penalty to be paid is the reintroduction of the
expansion variables back into the function. The
reintroductionof a variable makesit necessarto use the
same expansion variable more than once wiricteaseshe
numberof levels. Suchdiagramsare called PSBDDs with
repeatedvariablesand are discussedn detailsin [6]. The

delay of such structures is proportional to a number of levels

in a diagram, which is always larger than a number of

function variables. A numbeaf variableswhich haveto be

repeated depends very stronglyamorderof decomposition
variablesand various order optimization algorithms were
developed [6].

Definition 4. Pseudo Symmetric Binary Decision
Diagram is a Binary Decision Diagram where any two

geometrically-adjacentnodes on the same level of

decomposition are representedoa® node,andthereforethe
numberof nodeson eachlevel is equalor smallerthanthe
decomposition variable number associated with linadl. A
node ina PSBDD representa multiplexer operationon its
two inputs.

Theorem 1. Any totally symmetric function can be
represented as a Pseudo-Symmetric Binary Decision Diagr:
without repeated variables.

Theorem 2. An arbitrary Boolean function can be
represented as a Pseudo-Symmetric Binary Decision Diagr:
with repeated variables.

Definition 5. A Pseudo-Symmetri®ecision Diagram
without Join-Vertex operations(no repeatedvariables)is
called Simple.

Lemma 1. A totally symmetric Booleanfunction f with
only non-skewnon-equivalensymmetrycan be represented
as a Simple Pseudo-SymmetriBinary Decision Diagram
with all nodes representing Shannon expansion.

Lemma 2. A totally symmetric Booleanfunction f with
mixed polarity, non-skew non-equivalentor equivalent
symmetries(N1 or N2), can be representecas a Simple
Pseudo-SymmetricBinary Decision Diagram with any
permutation of levels of nodes representing Shannon
expansion, and levels of nodepresentindlipped Shannon
expansion.

V. PSEUDO-SYMMETRIC FUNCTIONS

Now, we show that some functions which had to be
represented with  repeated-variable PSBDDs can be
representedas PSBDDs without repeated variables by
relaxing one of the restrictions in tRRSBDD representation
and implementation.We allow both Shannonand flipped
Shannon decompositions to be presamthe samelevel as
shown in Fig.7. Basedon that we definea largerclassof
functions which can be representecby regular diagrams,
Pseudo-SymmetricBinary Decision Diagram with no
repeated variables, Simple PSBDDs. Tieducesdelay and
areaof the function representationSuchregular arrayscan
be representedis arrays of multiplexers or as a pseudo-
symmetric network of pass transistors.

a Shannon

‘ b Shannonf/flipped Shannon
l" c

Figure 7. Simple Pseudo-Symmetric Binary Decision
Diagram for psudo-symmetric functions.
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Generating functions which belong to themsv classes
can be done using their representatioras simple regular
arrays. All classescan be generatedsystematically, by
creating a diagram which representa specific class of
functions like for example pseudo-symmetridunctions,
shown in Fig. 7. We assign a valueOofr 1 to eachof the
pseudo-symmetric planes, L%, and for all possible
permutaionsyve generate?™-2 functions (totally symmetric
functions), by including all possible permutations of
variables polarities 2", totally symmetric functions with
mixed polarities are generated. Next, we allow all
permutationof feasible expansions(Shannonand flipped
Shannon) 2"2"...2%, to generate all pseudo-symmetric
functions.

Table 1.
Symm.] Symm. Pseudo- Total
var] Fun. Fun. Symm. Fun
Mixed Fun.
2 222 | (221-2) 2 >16] (2*1-2) 2 >16 2°
3 | 22| (22 2= 2| (221-2) 220 02 | 2°
4 A (24+1_2) F= 20 (24+1_2) 209~ 718 216
5 25+ (25+1_2) %=~ o (25+1 _2) Fold~ 925 232
6 | 2-2 | (212 2= 24 (2°1-2) 2= 2 | 2%

In Tablel1. we presentestimatedhumbersof functions
which belongto the different classesf functionsdiscussed
in this paper.The numberof variablesis givenin column
one andthe numberof functionswhich belongto the class
of totally symmetricfunctions is given in column two.
Column three gives the number of totally symmetric
functions with mixed polarities, and column four the
number ofnewely definedpseudo-symmetrifunctions. The
total number of functions for different number of variables is
given in column five. As can be observe all functiemsup
to 4 variables belong to some of the classes of symmneetric
pseudo-symmetric functions. Forore than five variablesa
number of pseudo-symmetridunctions, defined in this
paper,is smaller than the total number of completely
specifiedfunctions, but still relatively large. Furthermore,
we can extendthe classof pseudo-symmetriéunctions by

unit delay of a cell used for iismplementation(for example

a multiplexer) multiplied by a number of function’s
variables. So, such calculated delay cangedas the upper
limit for the circuit delay. To decrease the delay we can cov
theseregular diagramswith cells from the designateccell
library while maintaining local connectivity. Suginocedure
allows us to predict very accurately the upper liritsarea,
power and delay during a logic synthesisstep, which is
much before the layout of the design is created.

In addition, forfuture three-dimensiondiC structusthe
importance of local connections cannot be underestimAted.
layout design, relative positions of gates and wires, is
known before the layout isompleted.The main advantages
of these various simple regular diagrams are localized
connectionspredictabledelay,andno placemenbr routing
required. In addition, a known, in a pre-layout phase,
interconnectionstructure can be used to predict power
dissipationassociatedvith wires. Methods for generating
such simples regular pseudo-symmetric diagrams for
unknownfunctionsby utilizing all the symmetry relations
are currently being developedOur experimentson MCNC
benchmark functions are very promising.
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