
OpenGL’s Immediate Mode Interface on Open-Source
Platforms

Ian D. Romanick
IBM

idr@us.ibm.com

Abstract

The immediate mode vertex interface in
OpenGL is at a crossroads. The performance
of numerous applications with large installed
user bases depend heavily on the performance
of the immediate mode interface. A change of
just a few clock cycles for each entry point can
be felt by users of these applications. At the
same time, many newer applications do not use
the immediate mode interface at all, and some
newer versions of OpenGL (e.g., OpenGL ES)
have removed the interface altogether. This pa-
per presents one possible path forward that ad-
dresses the two disparate goals of deprecating
the immediate mode interface and making it
high performance.

1 Introduction

Backwards compatibility is one of the foremost
tenants of OpenGL. Programs written to the
OpenGL 1.0 specification published in 1992
will still function correctly on OpenGL 2.0 im-
plementations, some fourteen years later. This
feat has eased the maintenance of numerous
large-scale applications.

However, this has come at a cost. OpenGL im-
plementations need to implement no less than

four different interfaces for submitting vertex
data. This is a heavy burden for driver writers.
Each interface must be implemented, tested,
and optimized separately. This complicates the
code and testing of a driver.

The plurality of interfaces is also a burden
for application developers, particularly novice
OpenGL developers. With so many options
available for an operation so fundamental as
submitting vertex data, how is a developer to
know which interface is right for a particular
application? Moreover, how is a developer to
know which interface is optimal on a particular
implementation?

The end result is that very similar applications
will have wildly different interface usage pat-
terns. This presents additional difficulties for
the driver writer. It is nearly impossible to
guess what usage pattern applications will as-
sume is the fast-path. With a few notable
exceptions, driver writers are forced to guess
which paths need the most optimization. This
results in some usage patterns being optimal
on some drivers and other usage patterns be-
ing optimal on other drivers. This makes it
even more difficult for application developers
to know which are the fast-paths, and the cycle
perpetuates.

For these reasons, Khronos eliminated some
older interfaces from OpenGL ES. At the top

1

of their list was the immediate mode vertex in-
terface. In addition, the OpenGL ARB is de-
bating the removal of these interfaces from a
future version of OpenGL1. It has been pro-
posed that the removed interfaces can be imple-
mented via a shim between the application and
the OpenGL implementation. This shim would
convert the eliminated interfaces to more mod-
ern equivalents.

The remainder of this paper is divided into five
sections. Sections 2 and 3 describe the current
implementation of the immediate mode inter-
face shipping in X.org 7.0 and a possible reim-
plementation within libGL. Section 4 presents
projected performance impacts of such a reim-
plementation. Section 5 presents some exten-
sions that could improve the performance of the
reimplementation, and section 6 concludes the
paper.

2 Current Implementation

In X.org’s libGL, each OpenGL function is im-
plemented in a manner similar to a C++ virtual
function. Each GL context has an associated
function table called a dispatch table. Each
time an application calls an OpenGL function,
it actually calls into a short stub function, called
a dispatch function, that redirects to the true
function based on a pointer stored in the dis-
patch table.

The dispatch implementation makes heavy use
Linux’s thread local storage (TLS) mecha-
nism. Each thread has a per-thread vari-
able called _glapi_Dispatch_tls that
stores a pointer to the current dispatch ta-
ble. Figure 1 shows the dispatch function for
glVertex3fv. On most platforms, the com-
piler is able to optimize these functions to a

1The debate is when, not if.

glVertex3fv(const GLfloat ∗ v)

{

(∗_glapi_Dispatch_tls−>Vertex3fv)(v);

}

Figure 1: TLS optimized dispatch function

couple pointer fetches and a single branch in-
struction.

There is measurable overhead caused by the in-
direction. Applications that make heavy use of
the immediate mode interface for vertex sub-
mission and are not fill rate bound, may see
dispatch overhead as a performance bottleneck.
Applications that commonly fit this profile are
CAD applications and visualization applica-
tions used by the oil and gas industry. Unfor-
tunately, these are also the same applications
whose developers are most reluctant to move
their existing code base away from the imme-
diate mode interface.

This presents an unfortunate situation. The ap-
plications that most need a compatibility shim
are also the ones that will see the largest per-
formance degradation cause by any overhead
added by the shim.

3 Immediate Mode Emulation

libGL is currently designed to provide a very
thin layer between the application and the
driver. The conventional wisdom is that having
a thin layer minimizes the overhead imposed by
the layer. The unexpected side-effect is that by
having the layer be too thin, the layer always
adds overhead between the application and the
driver. By having the layer be a little thicker
in some places, the overhead can be minimized
further or eliminated altogether in other places.

The immediate mode interface can be imple-
mented directly in libGL. Regardless of the

2

driver loaded, libGL would store incoming ver-
tex data in internal buffers. When glEnd is
called, the data would be flushed to the driver.
This technique, which will be explained further
in section 3.1, even applies to indirect render-
ing.

There are two significant advantages to imple-
menting this emulation layer in libGL. Since all
of the code is in libGL, the overhead imposed
by the dispatch layer is eliminated. For appli-
cations that are dispatch bound, this could actu-
ally improve performance. In addition, moving
this code into libGL means that driver develop-
ers don’t need to maintain these code paths in
their drivers.

Platforms that don’t want to support the imme-
diate mode interface (e.g., OpenGL ES), can
provide a libGL that omits that functionality.
No modifications to the drivers would be re-
quired.

3.1 Implementation

This section provides an overview of a possible
reimplementation of the immediate mode inter-
face directly within X.org’s libGL. While this
is a brief overview, some important, difficult to
handle cases are covered in detail.

Each immediate mode entry point is imple-
mented in libGL. With the exception of provok-
ing functions such as glVertex3f, each im-
mediate mode function simply stores its input
data in a per-thread buffer and returns. When a
vertex is provoked, the data in each of the per-
thread buffers is copied to the next element in
a vertex array. When the arrays are filled or
glEnd is called, the data is passed from libGL
to the driver using the standard vertex array in-
terface.

In an ideal implementation, all vertex data is
stored in buffer objects and drawn with a single

glDrawArrays call. However, several legal
usage patterns prevent this ideal case from al-
ways being possible.

In addition to all the immediate mode data
functions, glBegin and glEnd are com-
pletely subsumed by libGL. Since all functions
that are valid within a glBegin / glEnd pair
are handled directly by libGL, once glBegin
is called the driver cannot be directly called.
libGL must replace the current dispatch table
with a special table of functions that set an error
of GL_INVALID_OPERATION and return.
This eliminates all possibility of glBegin /
glEnd errors within the driver. All related er-
ror checking code can then be removed from
the driver.

3.1.1 Non-array Data

For the most part, the only functions allowed
within a glBegin / glEnd pair are functions
that set vertex data. There are a few notable
exceptions that must be handled specially. For
example, if glMaterialf is called within a
glBegin / glEnd pair, all buffered data must
be submitted to the driver before calling the
driver’s glMaterialf function.

3.1.2 Non-uniform API Usage

Several classes of non-uniform API usage are
allowed by OpenGL but are difficult to han-
dle. Developer documentation frequently ad-
vises that vertex data be submitted in identical
groups with the same type [2] [5] [7], but many
applications exist that do not follow this advice.
Some examples of this pattern include:

• Making immediate mode function calls
outside a primitive (see figure 2).

3

glColor3fv(curr_color);

glBegin(GL_TRIANGLES);

for (i = 0 ; i < num_vert ; i++) {

glNormal3fv(normals[i]);

glVertex3fv(vertices[i]);

}

glEnd();

Figure 2: Setting data outside a primitive

glBegin(GL_TRIANGLES);

glVertex3fv(v1);

glVertex3iv(v2);

glVertex3dv(v3);

glEnd();

Figure 3: Mixing data types within a primitive

• Mixing data types of a particular element
within a primitive (see figure 3).

• Mixing data counts of a particular element
within a primitive (see figure 4).

• Using different data per-vertex within a
primitive (see figure 5).

• Mixing immediate mode calls and
calls to either glArrayElement or
glDrawElements.

Mixing immediate mode calls and
glDrawElements deserves further com-
ment. Developers of modern OpenGL
applications are known to use this technique
to implement geometry instancing [6]. The
OpenGL ARB recently decided that a dedi-
cated geometry instancing interface was not
needed for OpenGL [1]. It was believed that
a dedicated interface would provide little per-
formance or functional benefit over what can
already be achieved using the immediate mode
interface in conjunction with vertex arrays.
As a result, modern applications contain code
similar to figure 6.

glBegin(GL_TRIANGLES);

glVertex3f(x1, y1, z1);

glVertex2f(x2, y2);

glVertex4f(x3, y3, z3, w3);

glEnd();

Figure 4: Mixing data counts within a primitive

glBegin(GL_TRIANGLES);

glNormal3fv(n);

glColor3fv(c1);

glVertex3fv(v1);

glVertex3fv(v2);

glColor3fv(c3);

glVertex3fv(v3);

glEnd();

Figure 5: Mixing data elements within a primi-
tive

3.1.3 Display Lists

Display lists provide a completely flexible way
to record a series of OpenGL commands that
can be replayed at a later time. The extreme
flexibility has allowed application to develop-
ers to use, some would say misuse, display lists
in ways not envisioned by its creators. This has
made it very difficult for driver writers to op-
timize display lists. Since most drivers do not
optimize display lists to their fullest potential,
most application developers no longer use dis-
play lists for their intended purposes. Vertex
arrays and buffer objects now provide a much
higher performance path. Instead, only the ill-
behaved uses are commonly used by applica-
tions.

Two common misuses of display lists cause the
greatest difficulties for driver writers and for
the immediate mode emulator. Display lists can
contain mismatched glBegin / glEnd pairs
or no glBegin / glEnd pair at all. While this
may seem like an odd usage, many applications

4

for (i = 0 ; i < num_instances ; i++) {

glMultiTexCoord4fv(GL_TEXTURE0,

transform[i][0]);

glMultiTexCoord4fv(GL_TEXTURE1,

transform[i][1]);

glMultiTexCoord4fv(GL_TEXTURE2,

transform[i][2]);

glDrawElements(GL_TRIANGLES, num_indices,

GL_UNSIGNED_INT, indices);

}

Figure 6: Mixed arrays and immediate mode to
implement instancing

contain code similar to figure 7.

Display lists can also contain incomplete ver-
tex definitions, such as in figure 8). While this
usage is much less common, it is known to ex-
ist in shipping applications. It presents similar
implementation difficulties.

In a twist of cruel irony, a way to handle both
these uses exists by further misusing OpenGL
functionality. Figure 9 and figure 10 are func-
tionality equivalent2.

The technique in figure 10 can be used to send
extra data to the driver when glEndList is
called. The unfortunate side effect is that libGL
must also track all array enables and disables so
that the proper array state can be set.

3.2 Vendor Extensions

Some OpenGL extensions, such as
GL_ARB_vertex_blend, add new im-
mediate mode entry points. Only one such
extension currently exists that is not already
supported by libGL. It is unlikely that addi-
tional such extensions will be added in the

2The proper array enables must be set in the vertex
array case.

glNewList(l, GL_COMPILE);

glVertex3fv(v[0]);

glVertex3fv(v[1]);

glVertex3fv(v[2]);

glEnd();

glEndList();

glColor3fv(solid_color);

glBegin(GL_TRIANGLES);

glCallList(l);

glColor3fv(line_color);

glBegin(GL_LINE_LOOP);

glCallList(l);

Figure 7: Mismatched glBegin / glEnd in a
display list

glNewList(l, GL_COMPILE);

glNormal3fv(n[0]);

glColor3fv(c[0]);

glVertex3fv(v[0]);

glNormal3fv(n[1]);

glColor3fv(c[1]);

glEndList();

Figure 8: Incomplete vertex definition in a dis-
play list

future. The best solution will likely be to add
support to libGL for the one missing extension
and close the issue.

With the implementation proposed in sec-
tion 3.1 it is not possible with the emulator for a
driver to add support for a new immediate mode
entry point. The immediate mode entry points
in libGL will store data into an array and ad-
vance the array pointers at each call to a pro-
voking function (e.g., glVertex3fv). How-
ever, the driver never sees the provoking func-
tion calls. It, therefore, never knows when to
capture the data or advance the array pointers.

Since it is improbable that additional immedi-

5

glColor3fv(c[0]);

glNormalfv(n[0]);

Figure 9: Setting color and normal via immedi-
ate mode interface

glColorPointer(3, GL_FLOAT, 0, c[0]);

glNormalPointer(GL_FLOAT, 0, n[0]);

glArrayElement(0);

Figure 10: Setting color and normal via array
interface

ate mode entry points will be added by vendors
or the ARB, this is unlikely to be a problem in
practice. If this is becomes a problem, there are
two viable options. Support for the new func-
tions can be added to libGL. This is probably
the best choice.

Alternately, a new function could be provided
by the driver that libGL can use to signal it
to advance its internal array index. This may
be easier to implement in the short term, but it
seems more likely to end up as cruft that libGL
will have to carry around for little or no benefit
to most drivers.

For now the answer is to cross this bridge when
we come to it.

4 Projected Performance

To test the performance impacts, a simple
wrapper was created that converts vertex, nor-
mal, and color immediate mode calls into ver-
tex arrays.

In some ways, the wrapper should be consid-
ered the best case scenario. There are a couple
caveats to consider. By removing support for
the immediate mode interface from the driver,
new optimization opportunities will present

themselves (e.g., removal of all glBegin /
glEnd tests). Clearly, the wrapper does not
take any of these optimizations into considera-
tion. All tests with the wrapper were performed
with unmodified drivers.

The wrapper is configurable, at compile time,
to use either “classic” vertex arrays or buffer
objects. In addition, two different buffer object
modes can be utilized. In the first mode, the
same buffer objects are repeatedly filled with
new data and reused. In the other mode, a new
set of buffer objects are created for each batch
of data. The buffer object specification was
created to encourage this sort of “fire and for-
get” model when streaming dynamic data into
OpenGL [8]. This should be the optimal usage
model for the wrapper.

4.1 Test Setup

All tests were performed on an Athlon64 3000+
system. A system with a slow processor was
used to exaggerate the overhead incurred by
the wrapper. The wrapper does not handle any
of the difficult cases mentioned in the previous
section. To further exaggerate the CPU over-
head, all rendering was done to a 50-by-50 win-
dow.

Tests were performed on two different graph-
ics cards, each with two different drivers. A
Radeon 8500LE and a Radeon 9600XT were
both tested with the open-source drivers from
Mesa CVS and with ATI’s closed-source fglrx
drivers. These cards and drivers were chosen
because they each use a similar dispatch mech-
anism. This allowed certain optimizations in
the wrapper, and these optimizations allowed
the wrapper to more closely model a true im-
plementation inside libGL.

Nvidia hardware was not considered for this
test. Nvidia hardware, while common on

6

Figure 11: Sample image from test program

systems that use X.org, is only supported
by closed-source drivers supplied by Nvidia.
Nvidia’s drivers use a very different dispatch
mechanism than either the open-source drivers
or the fglrx drivers. These differences caused
any comparisons between the wrapped and
non-wrapped interfaces to be uninteresting.

The test program renders a checkerboard with a
single moving light source. The checkerboard
is tessellated to 256-by-256 quadrilaterals. Fig-
ure 11 shows a sample frame. The test can
submit from one to 256 quadrilaterals in each
batch (e.g., within one glBegin / glEnd
pair). Each test configuration renders the same
total number of polygons, so performance com-
parisons between each batch size are possible.
A more useful comparison is between different
rendering paths at the same batch size.

4.2 Results with Open-Source Drivers

At small batch sizes, the overhead associated
with the wrapper is very harmful to perfor-
mance. Figures 12 and 13 both show the same
trend. Batches of 8 or fewer polygons show
dramatically reduced performance.

For batches of 16 or more polygons, perfor-

mance is at least as good as the baseline.
For batches of 32, 64, and 128 polygons, the
wrapper improves performance. This is espe-
cially startling since the open-source drivers
for the Radeon family of GPUs all have hand-
optimized immediate mode paths.

On the Radeon 8500LE, the “fire and forget”
buffer object path showed very poor perfor-
mance. As shown in table 2, this path was, at
best, only able to achieve 10% of the perfor-
mance of the other paths. In the worst case it
achieved only 0.03% of the performance of the
baseline path. Since this is the manner in which
buffer objects are intended to be used for dy-
namic, streaming data, this shows a clear defi-
ciency in Mesa’s buffer object implementation.

The picture on the Radeon 9600XT is some-
what different. Here the “fire and forget” path
performed moderately. The reused buffer ob-
ject path gave the worst performance of all
tested configurations. From table 4, this con-
figuration loses 87 frames per second from the
baseline configuration. The reused buffer ob-
ject path likely gives poor performance due to
synchronization overhead with the GPU caused
at each call to glMapBuffer.

4.3 Results with fglrx Drivers

As expected, increasing the batch size, in all
configurations of the wrapper, increased per-
formance. The buffer object configurations
showed a linear doubling of performance as the
batch size doubled.

Interestingly, the performance of the vertex ar-
ray configuration peaks at a batch size of 64
polygons. Beyond that size the performance
gradually falls off. This is especially surpris-
ing since the performance of the non-wrapped
configuration continues to increase with batch
size.

7

The most shocking data is the raw performance
of the buffer object path on the fglrx drivers.
The “fire and forget” buffer object path tops
out, with a 256 polygon batch size, at 3% of the
baseline. The percentage of baseline is much
worse than the open-source drivers, but the raw
frame rate is comparable.

The buffer object path that reused buffer ob-
jects fared slightly better, but the results are still
disappointing. At each batch size this configu-
ration was approximately 20% faster than the
other buffer object configuration. Even with
this 20% improvement, the open-source drivers
achieve nearly eight times the throughput for
256 polygon batches.

It is possible that the fglrx drivers implement
glMapBuffer by creating a shadow buffer
in system memory. When glUnmapBuffer
is called, the contents of the shadow buffer is
copied to on-card memory. In the 16 polygon
batch case, this means that 128KiB of data are
copied when less than 2KiB of data is actually
used. Reducing the buffer object size used by
the wrapper from 128KiB to 9KiB increased
performance by a factor of 4 for 256 polygon
batches.

5 Future Extensions

Opportunities exist to create additional
OpenGL extensions that could improve the
performance of the immediate mode emulator.
These extensions could also replace some
of the functionality lost by removing the
immediate mode interface.

5.1 True Zero Vertex Stride

Moving redundant operations outside a loop is
well known optimization. OpenGL program-
mers are also familiar with this optimization,

and they often use by moving redundant data
outside a glBegin / glEnd pair. Data is then
uniformly set inside the pair. Figure 2 shows a
typical example. Figure 6 carries the identical
issue, but uses glDrawElements instead of
an explicit glBegin / glEnd pair.

To support a case like figure 2, libGL would
have to make num_vert copies of the spec-
ified color value to pass to the driver. This is
very inefficient, especially for large data sets.
Two similar ways exist to address this problem.

The vertex array interface can be extended to
accept a special stride value that instructs the
driver to not advance the pointer for each ele-
ment. Specifying a stride value of zero seems
to be the obvious choice, but that value already
has a special meaning in OpenGL. Using either
-1 or a negative value equal in magnitude to
the element size (e.g., -12 for an array with a
size of 3 and a type of GL_FLOAT) would also
work. If -1 is chosen, a special enumerant such
as GL_NO_STRIDE should be created.

While it is clear how such an approach would
interact with glDrawArrays, it is not clear
how it would interact with element oriented
drawing commands. It is also unclear whether
such an extension would have any use outside
the emulator.

Alternately, a more full featured instancing in-
terface can be implemented. One possible im-
plementation of such an interface adds per-
array state that dictates the frequency with
which the array pointer is updated[4]. Such
an interface, if it supports fixed-function at-
tributes, would improve the performance of the
emulator.

A full featured instancing interface would also
eliminate one of the most common cases where
modern applications use the immediate mode
interface. This eliminates part of the need for
the emulator!

8

5.2 Array State Containers

Several corner-cases require array state to be
disabled, pointers changed, and new array
state enabled. These state changes, which are
expensive enough on their own, are brack-
eted by calls to glPushClientAttrib and
glPopClientAttrib. Much of the ex-
pense of these operations and complexity of the
code could be eliminated by encapsulating ar-
ray state in an object[3].

The emulator would no longer need to jump
through numerous hoops, including the tedious
operation of disabling all arrays. It would sim-
ply bind a new array state object, do its work,
and rebind the old array state object. Not only
would these operations be easier to implement
and more performant, they would be much less
likely to contain bugs.

5.3 Disable All Arrays

A fair amount of work is required by the
driver writer to implement the additional func-
tionality proposed in section 5.2. Some of
the benefit gained by that extension could
also be gained with a much simpler ex-
tension. By adding a new enumerant to
glDisableClientState that disables all
previously enabled arrays, the implementation
of the emulator could be simplified.

5.4 Flush Callback

A common optimization in OpenGL drivers
is to merge batches primitives from multiple
glBegin / glEnd pairs together. If an ap-
plication sends multiple small batches of prim-
itives without intervening state changes, the
driver can treat the individual batches as a sin-
gle, large batch. Without knowledge of poten-
tial state changes between a call to glEnd and

the next call to glBegin, this optimization is
impossible.

A simple extension enables the driver to com-
municate this information back to the emula-
tor. Using the extension, libGL registers a call-
back function with the driver. When driver de-
tects that a state change had occurred, it invokes
the callback function. libGL then flushes any
pending drawing commands to the driver. Inter-
nally, Mesa already implements a nearly iden-
tical mechanism.

Implementing such a mechanism for indirect
rendering should trivial. Indirect rendering im-
plementations already combine multiple imme-
diate mode calls into large batches. These
batches are sent in a single Render protocol
packet. When a state change function is called,
the pending Render packet is sent to the server
before sending the state change packet.

Such a callback mechanism is a complete moral
violation of the OpenGL design. The poten-
tial performance benefits for applications that
make heavy use of the immediate mode inter-
face should out weigh any qualms that a driver
writer may have.

5.5 Subrange Unmap

The performance anomalies with buffer objects
shown in section 4.3 may be tracable to in-
herrent inefficencies with glUnmapBuffer.
The problem, which could easilly apply to ap-
plications as well, is glUnmapBuffer must
assume that every byte of the buffer object has
been modified. If only a small portion of a large
buffer object has been modified, this may re-
sult in large amounts of data being needlessly
copied from system memory to on-card mem-
ory.

An extension that allows an application or the
immediate mode emulator to mark subregions

9

of the buffer object as “dirty” would elimi-
nate this problem. This trivial extension could
take either of two forms. A special version of
glUnmapBuffer could be added that takes a
list of dirty ranges as a parameter. Alternately,
a new function could be added that allows ap-
plications to mark regions of the buffer as dirty
before calling glUnmapBuffer.

6 Conclusion

Fully implementing OpenGL’s immediate
mode interface as a layer on top of the existing
vertex array interface is a large, complex task.
The non-obvious ways in which applications
can combine the immediate mode interface
with display lists and vertex arrays creates
a number of corner cases that are likely to
be more common in practice than one would
hope. Unfortunately, handling these cases
correctly is not enough. High performance,
relative to existing “native” implementations of
the immediate mode interface is also required.

Drivers internally utilize extra data to perform
additional optimizations when the immediate
mode interface is used. The majority of this
data, such as whether or not a state change has
occurred, is simply not available to a layered
implementation. Implementing a communica-
tion interface, perhaps via OpenGL extensions,
between libGL and the driver may make some
of these optimizations available.

Implementing such extensions has two poten-
tial disadvantages. First, implementation of
these extensions will nullify some of the code
reduction benefits of moving the immediate
mode interface code from the driver to libGL
or a layered library. In addition, implementing
these extensions creates a tighter coupling be-
tween libGL and the driver. Some driver writers
may find this objectionable.

The immediate mode interface provides func-
tionality that is not available through other
means. If a future version of OpenGL is to
truly deprecate the immediate mode interface,
suitable replacements must be provided. It is
likely that extensions can be created that will
suit the needs of both users and the immediate
mode wrapper.

Data clearly shows that an immediate mode
wrapper will cause a performance hit. Ven-
dors of applications whose performance is tied
to the immediate mode interface need to begin
considering their available options and working
with driver and hardware vendors now.

Not only is this as wake-up call for applica-
tion developers but also for driver writers. The
poor performance of buffer objects on all tested
card and driver combinations is cause for fur-
ther alarm. Any optimal immediate mode em-
ulator will need to use buffer objects. Until
changes are made within the available drivers,
this will not be a performant option.

References

[1] OpenGL ARB meeting minutes, Decem-
ber 2004. http://www.opengl.
org/about/arb/notes/meeting_
note_2004-12-07.html.

[2] David Blythe, Brad Grantham, Mark J.
Kilgard, Tom McReynolds, and Scott R.
Nelson. Advanced Graphics Program-
ming Techniques Using OpenGL. In
SIGGRAPH ’99 Conference Pro-
ceedings. SIGGRAPH, ACM, August
1999. http://www.opengl.org/
resources/tutorials/sig99/
advanced99/notes/.

[3] APPLE_vertex_array_object exten-
sion specification, 2002. http:

10

//oss.sgi.com/projects/
ogl-sample/registry/APPLE/
vertex_array_object.txt.

[4] Simon Green. NVIDIA OpenGL
update, 2006. http://
developer.nvidia.com/object/
opengl-nvidia-extensions-gdc-2006.
html.

[5] Hewlett Packard. HP’s Implementation of
OpenGL: HP 9000 Workstations, 1997.

[6] Matt Pharr. GPU Gems 2: Program-
ming Techniques for High-Performance
Graphics and General-Purpose Computa-
tion. Addison-Wesley, 2005.

[7] Sun Microsystems. Sun OpenGL 1.2.1 for
Solaris Implementation and Performance
Guide, 2000.

[8] Ian Williams and Evan Hart. Effi-
cient rendering of geometric data
using OpenGL VBOs in SPECview-
perf. Technical report, June 2005.
http://www.spec.org/gpc/opc.
static/vbo_whitepaper.html.

11

Config. / Quads per batch 1 2 4 8 16 32 64 128 256
Baseline 28.2 45.4 54.4 60.6 64.2 66.2 67.3 68.2 68.5
Vertex Array 6.1 11.7 22.3 39.4 63.5 65.4 66.7 67.2 65.4
Buffer Object 0.02 0.05 0.09 0.2 0.4 0.8 1.5 3.0 5.8
Reused Buffer Object 0.03 0.05 0.1 0.2 0.4 0.8 1.6 3.2 6.2

Table 1: Frame rates for Radeon 8500LE (fglrx)

Config. / Quads per batch 1 2 4 8 16 32 64 128 256
Baseline 17.6 24.3 32.3 36.0 41.0 43.6 45.5 46.2 46.6
Vertex Array 2.2 4.1 13.8 23.5 37.1 49.1 49.1 49.4 49.3
Buffer Object 0.03 0.05 0.1 0.2 0.4 0.8 1.6 3.0 5.7
Reused Buffer Object 2.0 3.7 11.5 21.5 33.9 47.4 49.1 49.5 49.3

Table 2: Frame rates for Radeon 8500LE (Xorg)

Config. / Quads per batch 1 2 4 8 16 32 64 128 256
Baseline 54.5 81.8 108.1 127.8 140.8 149.8 154.9 158.3 162.0
Vertex Array 17.6 32.4 55.7 83.6 106.1 117.0 120.9 119.6 109.9
Buffer Object 0.02 0.05 0.1 0.2 0.4 0.8 1.6 3.0 5.6
Reused Buffer Object 0.03 0.07 0.1 0.3 0.5 1.1 2.1 3.9 7.2

Table 3: Frame rates for Radeon 9600XT (fglrx)

Config. / Quads per batch 1 2 4 8 16 32 64 128 256
Baseline 14.7 26.0 43.0 64.5 75.6 80.3 85.4 88.3 89.2
Vertex Array 1.3 2.7 5.3 10.3 19.6 35.6 59.5 92.2 108.9
Buffer Object 0.9 1.8 3.5 6.5 11.4 18.1 25.5 31.5 35.6
Reused Buffer Object 0.01 0.02 0.03 0.06 0.1 0.2 0.5 1.0 2.0

Table 4: Frame rates for Radeon 9600XT (Xorg)

12

 0.0625

 0.125

 0.25

 0.5

 1

 2

 1 2 4 8 16 32 64 128 256

Fr
ac

tio
n

of
 b

as
el

in
e

fra
m

er
at

e

Polygons per batch

Radeon 8500LE (fglrx)
Radeon 8500LE (X.org)
Radeon 9600XT (fglrx)

Radeon 9600XT (X.org)

Figure 12: Performance using vertex arrays

 0.000244141

 0.000488281

 0.000976562

 0.00195312

 0.00390625

 0.0078125

 0.015625

 0.03125

 0.0625

 0.125

 0.25

 0.5

 1 2 4 8 16 32 64 128 256

Fr
ac

tio
n

of
 b

as
el

in
e

fra
m

er
at

e

Polygons per batch

Radeon 8500LE (fglrx)
Radeon 8500LE (X.org)
Radeon 9600XT (fglrx)

Radeon 9600XT (X.org)

Figure 13: Performance using buffer objects

13

 0.000244141

 0.000976562

 0.00390625

 0.015625

 0.0625

 0.25

 1

 4

 1 2 4 8 16 32 64 128 256

Fr
ac

tio
n

of
 b

as
el

in
e

fra
m

er
at

e

Polygons per batch

Radeon 8500LE (fglrx)
Radeon 8500LE (X.org)
Radeon 9600XT (fglrx)

Radeon 9600XT (X.org)

Figure 14: Performance using reused buffer objects

14

