<|||

IBM Linux Technology Center

OpenGL's Immediate Mode Interface on
Open-Source Platforms

ﬁ lan D. Romanick
idr@us.ibm.com

© 2006 IBM Corporation

IBM Linux Technology Center

Agenda

“ Where is OpenGL now?

“ Where is OpenGL going?

“ How does the current infrastructure fit in?
“ How can the infrastructure adapt?

* Conclusion

a

‘ © 2006 IBM Corporation

IBM Linux Technology Center

Where is OpenGL now?

" OpenGL is an ornery 14-year old.

“ The API has picked up a lot of “cruft” over the years
* New features are added that improve performance / usability
» Existing applications need the old interfaces kept around

— Backwards compatibility is one of OpenGL's strengths!

* There are now 4 different ways to submit vertex data

— Burden for application developers: How to choose?

— Burden for driver developers: Which to optimize?

» DirectX “flushes” API periodically and doesn't have this problem

" OpenGL Architecture Review Board is aware of this problem.

| © 2006 IBM Corporation

IBM Linux Technology Center

Where is OpenGL going?

“ Some interfaces will be removed from a future version
* Follow the footsteps of OpenGL ES
“ Compatibility for some interfaces will be provided by a “shim”

* Thin layer between the application and the driver that emulates the
deprecated functionality

» Some versions of the shim may also provide debugging support

a

‘ © 2006 IBM Corporation

IBM Linux Technology Center

Where is OpenGL going? (cont.)

“ There are too many different ways to submit vertex data

* Immediate mode

» Display lists

» Client-side vertex arrays
» Server-side buffer objects

“ Follow the OpenGL ES lead and give immediate mode the axe!
“ The shim layer would emulate immediate mode using either

‘ © 2006 IBM Corporation

vertex arrays or buffer objects

IBM Linux Technology Center

Current infrastructure

“ libGL provides thinnest possible layer between driver & app
“ Function calls directed into the driver via dispatch functions and
a dispatch table

» Similar to C++ virtual functions

* Adds measurable overhead to some applications

voi d gl Vertex3fv(const dfloat *v)

{
}

‘ © 2006 IBM Corporation

(* _glapi _Dispatch tls->Vertex3fv)(v);

IBM Linux Technology Center

Adapting the infrastructure

“ Existing library is obvious location for “shim”
* Implement immediate mode directly in libGL

* Marshal data into vertex arrays

» Submit data when glEnd is called

* Eliminates dispatch overhead!

» Similar to indirect rendering implementation

“ Moves a lot of code from each driver into libGL

a

‘ © 2006 IBM Corporation

* Violates “thinnest possible” principle, may be contentious

IBM Linux Technology Center

Pitfalls to implementation

“ Non-array data
> glMaterialf

“ Non-uniform API usage
* Mixing data types within a primitive
» Mixing data counts within a primitive
» Changing per-vertex data within a primitive
» Mixing immediate mode and arrays

“ Display lists

ﬁ; Vendor extensions

4
‘ © 2006 IBM Corporation

IBM Linux Technology Center

Projected performance

“ Tested simple program with partial emulation layer
“ Emulation layer can use several modes

» Client-side vertex arrays

» “Fire and forget” server-side buffer objects

— This should be the optimal mode

* Reused server-side buffer objects

* Tested two cards and two drivers

» Radeon 8500LE with open source drivers and fglrx

E * Radeon 9600XT with open source drivers and fglrx

| © 2006 IBM Corporation

IBM Linux Technology Center

Performance with vertex arrays

Radeon EESIBBLE (f‘gltlﬂx) —
Radeon S5HELE CH.orgd ——
Radeon 96B8XT Cfglrxd —&—
Radeon D&6BEXET C(H.orgd —8—

Fraction of baseline framerate

B.123

O.EE2S 1 1 1 1 1 1 1
1 2 4 = 1& o= &d 1z& 25e

Folygons per batch

(4

l © 2006 IBM Corporation

IBM Linux Technology Center

a.3 T T T T T T T
Radeon S8588LE <(fglrxd —— h
Radeon S85BHEHLE C(H.orgl) —s—

a.e5 Radeon 96BBHET Cfglr=) —%—]

(Radeon 2688XT (X.org) —8—

B.125

B.H8625 d

B.83125

B.815625

B.a872125

B.B832908230

B.881952182

Fraction of haseline framerate

B.0883Fe362

B.8884332381

G.E6068244141 1 1 1 1 1 1 1
1 2 4 2 16 32 &4 128 256

Folygons per batch

© 2006 IBM Corporation

IBM Linux Technology Center

Performance with buffer objects (reused)

Radeon SEBBLE (Fg&rx) —_—t
Radeon S85BHEHLE C(H.orgl) —s—
 Radeon 968BAHET (fgler=) —#—
Radeon 2688XT t(X.org)r —B—

B.H8625

B.815&25

B.B832908230

Fraction of haseline framerate

B.088978588

G.E6068244141 1 1 1 1 1 1 1
1 2 4 2 16 32 &4 128 256

Folygons per batch

(4

l © 2006 IBM Corporation

IBM Linux Technology Center

Surprising results!

“ Buffer object performance inconsistent across implementations
* “Fire & forget” performed poorly

— By the design of buffer objects, this should be the optimal mode!

* Neither usage pattern well suited to fglrx implementation!

“ Gives insight into implementation specifics

> fglrx implements buffer mapping by copying

» Helps guide future interface designs

a

‘ © 2006 IBM Corporation

IBM Linux Technology Center

Future extensions to improve implementation

“ True “zero” stride

* Reuse data element for each vertex in a primitive
» Extend to full instancing?

“ Array state containers

* Already proposed for future OpenGL version
* GL_APPLE_vertex_array_object implemented in Mesa

“ Flush callback

» Driver notifies shim of state changes to improve batching

ﬁ; Buffer object subrange unmap

* Inform driver that a subrange of a mapped VBO was modified

| © 2006 IBM Corporation

IBM Linux Technology Center

Next steps

“ Determine acceptability of “fattening” libGL

» Doing this right will likely require significant changes to Mesa

“ Rearchitect Mesa to move common front-end code

» X.org libGL and pure software Mesa should share code

» Should reduce maintainence burden on both paths

o

‘ © 2006 IBM Corporation

IBM Linux Technology Center

Questions?

(4

l © 2006 IBM Corporation

IBM Linux Technology Center

Legal Statement

“ This work represents the view of the authors and does not necessarily
represent the view of IBM.

“ IBM is a registered trademark of International Business Machines
Corporation in the United States and/or other countries.

“ Linux is a registered trademark of Linus Torvalds.

“ Microsoft, Windows, and DirectX are trademarks of Microsoft
Corporation in the United States, other countries, or both.

“ OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

“ Other company, product, and service names may be trademarks or

\& service marks of others.

| © 2006 IBM Corporation

