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1 Introduction

This project aims to compare implementations of texture
mapping algorithms on general purpose microprocessors
and graphics processing units (GPUs). There is a notion
among graphics hardware professionals that GPUs attain
higher texture mapping performance than many-core gen-
eral purpose microprocessors due to the existence of spe-
cialized texture access hardware found in the GPU. As an
example, Intel’s Larrabee essentially combines a many-core
general purpose microprocessor architecture with GPU-
style texture access hardware[9].

We seek to analyze two specific aspects of the perfor-
mance of texture mapping algorithms on general purpose
microprocessors. First, we seek to determine what the per-
formance gap is between texture mapping algorithms im-
plemented on general purpose microprocessors and texture
mapping on GPUs with comparable memory architectures.
Second, we seek to determine what factors limit texture
mapping performance on current general purpose micropro-
cessors.

The remainder of this paper is divided in to five sections.
Section 2 provides some texture mapping background. Sec-
tion 3 describes how a set of representative benchmarks will
be generated for the purpose of this comparison. Section 4
describes the attributes of GPUs and general purpose mi-
croprocessors that will be used in the comparison. Section
5 proposes a subset of common texture mapping operations
that will be implemented in software on a many-core gen-
eral purpose microprocessor. Finally, section 6 describes
the analysis that will be performed on the collected data.

2 Texture Mapping Background

Texture mapping is, in the most general terms, the appli-
cation of an image onto a three-dimensional surface. This
approach was originally developed by Edwin Catmull in the
early 70’s [5]. By the mid-90’s texture mapping was consid-
ered by many to be one of the fundamental drawing prim-
itives [7]. Today, it is difficult to find an paper published
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Figure 1: Graphics pipeline

on the topic of real-time 3D graphics that does not involve
texture mapping in some way.

Polygons in 3D are rendered by a variety of algorithms.
Applications specify values for several parameters at each
vertex of each polygon. The rendering algorithm calculates
the value of each parameter at the 3D position correspond-
ing to each display pixel covered by the polygon. These
parameters are then supplied as inputs to a program, which
typically runs on the GPU, called a fragment shader1. The
fragment shader can perform a variety of calculations and
access texture maps. Figure 1 shows a portion of a typical
graphics pipeline.

One common use is to specify coordinates for specific
positions in the texture map as per-vertex parameters. These
parameters are then used directly in the fragment shader to
read values from the texture map. This allows images to
be wrapped around a 3D object in much the same way that
wrapping paper is wrapped around a present. These types
of texture accesses are called direct reads.

1Fragment shader is the terminology used in OpenGL. Direct3D calls
these programs pixel shaders.
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Another common use is for applications to sample one
texture, perform some calculations on the value read, and
use the new value as the location to sample another texture.
The second texture access in this scenario is called a de-
pendent read. This can be used, for example, to calculate
reflections from bumpy surfaces. The first texture specifies
parameters for the bumpiness of the surface, and the second
texture contains an image of the environment[8].

In order to limit aliasing artifacts resulting from
undersampling the texture image, GPUs implement
mipmapping[11]. In mipmapping, successively smaller
prefiltered copies of the original texture are stored. Texture
coordinates at a particular pixel are compared to the coor-
dinates used at neighboring pixels to determine the area of
the texture that covers each pixel. The prefiltered image
that contains texture pixels (texels) covering approximately
the same area in the original image is used. Since the cal-
culated coverage area may not match any prefiltered im-
age exactly, the two closest prefiltered images are sampled
and filtered. Since the specified texture coordinates may not
specify the center of a texel, four neighboring texels from
both prefiltered images are sampled and filtered together.
As a result, eight texels are read for each texture map ac-
cess. This method of texture access is often referred to as
trilinear filtering[10].

3 Benchmarks

Modern graphics applications access texture data through a
variety of means. Accesses from typical applications are a
mixture of direct reads and dependent reads.

Several modern applications will be analyzed to deter-
mine their access patterns for both direct and dependent
reads. The analysis will be performed by modifying Mesa,
an open-source implementation of an OpenGL-like 3D ren-
dering API, to emit extra data during rendering. In partic-
ular, the shaders and textures used will be written to disc
during rendering. New shaders and textures will be created
that mimic the access patterns of the originals. One goal
of the new shaders will be to remove all non-essential el-
ements. The ultimate purpose is to measure the speed of
texture access, not to measure the speed of lighting calcula-
tions.

4 Representative Hardware

High-end graphics processor systems include a number of
features not found in general purpose microprocessor sys-
tems. High-end GPUs are traditionally paired with fast,
wide buses connected to exotic memories. For example, the
Geforce GTX 285 from Nvidia utilizes 8 independent 64-bit
data buses connected to 2.4GHz (effective) GDDR3 mem-
ory. This results in a theoretical peak memory bandwidth
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Figure 2: Memory bandwidth comparison

of approximately 156GB/s for the GTX 285[2]. Compara-
tively, an Intel Core i7 typically utilizes 3 64-bit channels
connected to 2.1GHz (effective) DDR3 memory. This re-
sults in a theoretical peak memory bandwidth of 25.6GB/s
for the Core i7[3]. The exotic, complex memory architec-
ture of the GTX 285 provides it roughly six times the band-
width of the Core i7. AMD’s Radeon HD 4890 has a similar
memory bandwidth advantage[1].

In order to make an even comparison between a GPU and
a general purpose microprocessor for a memory intensive
task such as texture mapping, systems with similar mem-
ory architectures must be used. There do not currently ex-
ist any general purpose microprocessor systems that utilize
159GB/s memory buses. However, there are GPUs that uti-
lize 25.6GB/s memory buses. At least four vendors ship
GPUs integrated into the memory controllers used with gen-
eral purpose microprocessors. Since these GPUs are inte-
grated into the CPU’s memory controller, they necessarily
use the same memory architecture as the CPU.

For the purpose of this project, at least one integrated
GPU will be selected. The ultimate selection will depend
on GPU availability and on the selection of general purpose
microprocessors. If time permits and systems are available,
additional integrated GPUs may be tested.

5 Texture Operations
Modern GPUs implement a staggering variety of texture
operations that applications can utilize. There is variety
both in terms of the layout of the textures and the for-
mats of the data. Textures can be stored as 1-dimensional,
2-dimensional, or 3-dimensional arrays of pixels. Tex-
tures can also be stored as several varieties of arrays of
2-dimensional arrays of pixels[4][6]. The pixels stored in
the textures can be stored using one to four components
(nominally red, green, blue, and alpha) using normalized
integers, unnormalized integers, and floating-point values
in sizes ranging from 8 to 32-bits per component. Textures
can also be stored in a variety of compressed formats.

Implementing support for this variety of operations is sig-
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nificantly beyond this scope of this project. This project
will instead focus on one common variety of 2-dimensional
texture. The texture will store four components of 8-bit nor-
malized integers.

6 Analysis
The raw performance, measured in texture accesses per sec-
ond, will be measured on each of the GPUs and general pur-
pose microprocessor systems. Analysis of the data across
the variety of benchmarks will support or refute the notion
that custom texture access hardware gives GPUs an advan-
tage over general purpose microprocessors. The analysis
will also enable sizing of the performance gap.

During the measurement of the general purpose micro-
processor systems, additional data will be collected. De-
tailed instruction timings for the texture access functions
and detailed cache hit-rate measurements will be collected.
The data will be analyzed, and comparisons will be made
between the instruction timings and the cache accesses.
Based on these comparisons, the factors limiting general
purpose microprocessor for texture mapping operations will
be identified.
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