
Real-Time GPU NLMeans for HD Video

Ian Romanick ∗

Abstract

The non-local means filter (NLMeans) is an effective tool for
removing noise from still images and video sequences. How-
ever, it remains computationally expensive. Previous work uti-
lized commonly available GPUs and algorithmic improvements
to achieve real-time performance on standard definition (480p),
grayscale video content. This paper presents extensions to that
work for high definition (720p and 1080p), color video content.

1 Introduction

A variety of techniques have been developed for removal of
noise artifacts in still images and video. One popular technique
is the non-local means (NLMeans) filter. Previous publications
[Buades et al. 2005] have shown this technique to be effective
for the removal of many types of common artifacts in a variety
of images. While this technique is popular, it has a relatively
high computational overheard.

For each pixel in the source image, the NLMeans filter com-
pares the [−A..A] × [−A..A] region immediately surrounding
the source pixel with the same-sized region surrounding each
pixel within a [−B..B] × [−B..B] search window around the
source pixel. The similarity between the two regions is used to
generate a filter weight for the pixel in the search window. Once
the weights for all pixels in the search window have been calcu-
lated, the resulting kernel is applied to the pixels in the search
window to generate the filtered value of the source pixel.

For video, the search window may be extended to include pre-
vious or future frames. In this scenario, the search window is
[−B..B]× [−B..B]× [tpast..tfuture]. While this spatial search
window is often symmetric, the temporal search window may
not be. Considering future frames would add undesirable lag
while denoising live video streams, for example, so tfuture may
be 0 even when tpast is not.

Formally speaking, the filter is

X(p) =

∑
q∈δ w(p, p + q)Y (p + q)∑

q∈δ w(p, p + q)

w(p, p + q) = g

 ∑
(∆x,∆y)∈[−A..A]2

‖ r(∆x,∆y)
p,q ‖2



r(∆x,∆y)
p,q = Y (px + ∆x, py + ∆y)

− Y (px + qx + ∆x, py + qy + ∆y)

where g is a function that remaps distances to weights. Numer-
ous popular remapping functions exists. One function that is
used elsewhere[Goossens et al. 2008] and in this experiment is
the Bisquare robust weighting function.

g(r) =

{(
1− (r/h)2

)2
r ≤ h,

0 r > h

∗e-mail: idr@cs.pdx.edu

where h is a tunable parameter.

The project set out with the goal of implementing NLMeans for
real-time processing 1080p video sequences on an off-the-shell
integrated GPU. To set reasonable bounds, tfuture = tpast = 0,
a 5×5 search window (B = 2), and a 5×5 region size (A = 2)
was set. The GPU selected was an Intel HD Graphics 4000.

The remainder of this paper is divided into four sections. Sec-
tion 2 summarizes the previous work on which this study is
based. Section 3 presents a series of new optimizations imple-
mented during this study. Section 4 summarizes the preformance
results of the study. Finally section 5 concludes the paper and
suggests some areas for future work.

2 Previous Work

Previous work optimizing NLMeans for GPUs focused on elimi-
nating algorithmic redundancies[Goossens et al. 2010]. Two key
observations led to their algorithmic improvements.

• Two neighboring pixels, (px, py) and (px + 1, py), each
utilize Y (px + 1 + ∆x, py + ∆y) − Y (px + qx + 1 +
∆x, py + qy + ∆y).

• Two pixels separated by q, p and p − q, utilize Y (p) −
Y (p− q) and Y (p− q)− Y (p− q + q).

To take advantage of these observations, the Goossens et al. con-
vert the weight summation portion of the algorithm to a separa-
ble filter. They perform a separate pass for each possible value
of q. In each pass, they perform four sub-passes. The first three
sub-passes are:

• Calculate ‖ r(0,0)
p,q ‖2.

• Calculate
∑

∆y∈[−A..A] ‖ r
(0,∆y)
p,q ‖2

• Calculate g
(∑

∆x∈[0..A]

(∑
∆y∈[−A..A] ‖ r

(0,∆y)
p,q ‖2

))
Notice that the final summation only covers half the range. The
final pass takes advantage of the symmetry in distance calcula-
tions. If the output of the third sub-pass is an image K, the final
sub-pass calculates

X(p) = X(p)+

{
K(p)I(p + q) q = 0,

K(p)I(p + q) + K(p− q)I(p− q) otherwise

[Goossens et al. 2010] use single compontent, 16-bit floating-
point surfaces for the results of all sub-passes.

3 Additional Optimizations

While previous work focused on algorithmic optimizations, this
work has focused on implementation micro-optimizations. The
primary focus has been reducing the number of passes, and a
secondary focus has been reducing overall memory bandwidth
requirements.

Even with the previous optimizations, generating the filter
weights for a 5× 5 search window requires 15 passes, and each



pass requires four sub-passes. Further optimization is possible
by reducing the number of passes. The number of passes can be
halved by modifying the first sub-pass to calculate ‖ r

(0,0)
p,q ‖2

and ‖ r(0,0)
p,q+1 ‖2. Each of these is output to separate components

of a two component surface. The modified sub-pass generates
two weights from three texture accesses compared to four tex-
ture accesses previously (the value of I(p) is re-used).

The second and third sub-passes are modified to operate on pairs
of values. Since the values are stored in separate components
of a single image, both values are read using a single texture
look-up. While the total memory bandwidth is the same, each
access to the texture unit, even for cache-hot accesses, carries
significant overhead.

The final pass is also modified, but the modifications are some-
what more complex. K(p) stores the weights for the pixels at
I(p+q) and I(px+qx+1, py+qy). For the symmetric portion
of the of the weight calculation, Kx(p− q) stores the weight for
the pixel at I(p− q), and Ky(px − qx − 1, py + qy) stores the
weight for the pixel at I(px − qx − 1, py + qy). The modified
final sub-pass accumulates two weights using seven texture ac-
cesses compared to eight texture accesses previously (a single
access of K(p) supplies two weights).

It is possible to extend this optimization to generate three
weights, (px, py), (px + 1, py), and (px + 2, py) per pass. As
before, this reduces the total number of passes, and saves a sin-
gle texture access in the first sub-pass (3 weights for 4 accesses)
and the final sub-pass (3 weights for 10 accesses).

Extending to four or more weights per pass poses challenges.
For a 5× 5 search window, the added weight cannot come from
(px + qx + 3, py + qy) as this lies outside the search window.
It is also not possible to use (px + qx, py + qy + 1) because the
symmetric weight value, K(px−qx, py−qy−1, does not contain
a weight involving I(p). The symmetric weight is not available
anywhere in K. The symmetric weight is only available in K if
both (px + qx, py + qy + n) and (px + qx, py + qy − n) are
calculated per pass.

Simply extending the mask to (px+qx+1, py+qy), (px+qx+
2, py + qy), (px + qx, py + qy + 1), and (px + qx, py + qy − 1)
seems plausible, but the irregular shape of the mask makes cov-
ering the entire [0..2]× [−2..2] search window difficult. Multi-
ple masks would need to be used to cover the full search window,
and not all of the masks would be able to generate four weights.

The most plausible extension of the technique is to cover the
entire search window in a single pass. This would generate 15
weights per pass. This would require four sepearate render tar-
gets. This may carry some additional cache penalties, and this is
left as future work.

As a final optimization, the format temporary surfaces
was changed from 3-component, 16-bit floating-point1 to 3-
component, 10-bit normalized integers2. The distances gener-
ated by the first sub-pass have a maximum magnitude of

√
3,

so the output of that sub-pass must be scaled to fit in the [0, 1]
storable in the surface. The output of the second sub-pass must
be further scaled, and the values must be restored when read by
the third sub-pass. The result of the Bisquare robust weighting
function naturally lie in the range [0, 1], so no further changes
are necessary. This reduces the memory bandwidth require-
ments by approximately 50%.

1The OpenGL implementation stores the surface as GL RGBA16F.
2The internal format requested is GL RGB10 A2 EXT.

q values per pass 480p 720p 1080p # passes
1 17ms 109ms 15
2 14.7ms 87ms 10
3 9.4ms 25ms 56ms 5

3 (10-bit surface) 7.8ms 21ms 46ms 5
Pixel increase 1x 2.66x 6x

Table 1: Comparison of optimization techniques. All use 5x5
region size and 5x5 search window on a single frame.

4 Results

Table 1 compares the performance of the three methods imple-
mented in this study. As the number of pixels in the frame in-
creases, there is a linear increase in the processing time. This
suggests that there are not adverse cache behaviors involved at
these resolutions.

At 1080p, the 2-sample method improves performance 20%, but
the 3-sample method improves performance by a further 36%.
The super-linear improvement is due to the 2-sample method
processing too many q values. The search window is 5 × 5, so
for each qy value, three qx values should be processed. Since
the 2-sample method processes values two at a time, it processes
four qx values.

By comparison, [Goossens et al. 2010] achieved 9ms per frame
for 480p grayscale content3. While direct comparisons with their
implementation was not possible, their presented work should be
very similar to the 1-sample method presented here.

5 Conclusion

Real-time performance for 480p and 720p color video is easily
achievable with the existing implementation on current genera-
tion integrated GPUs. Real-time performance for 1080p color
video, however, is just out of reach. Additional implementa-
tion improvements may yield somewhat better performance, and
driver improvements may also help. However, it is not expected
that this will yield sufficient gains.

In addition to improving the performance of the {A = 3, B =
3, tpast = 0, tfuture = 0} NLMeans filter, the optimizations
investigated in this project could be applied to larger values of
A, larger values of B, and larger values of tpast. Each of which
should improve the quality of the final result.

Both this study and [Goossens et al. 2010] ignore the effects of
the video decoder. The data being denoised must come from
somewhere, and this data requires some resources to process.
In addition, this work uses RGB encoded data. Typical video
processing pipelines provide data in planar YUV encodings, and
the chromatic components are frequently subsampled. Utilizing
both factors may allow some small performance improvements.
The caching and memory bandwidth effects of the video decoder
on the denoising algorithm may have additional penalties that
should be studied.

References

BUADES, A., COLL, B., AND MOREL, J.-M. 2005. A non-
local algorithm for image denoising. In Proceedings of the

3On a different GPU and different CPU. Identical hardware was not
available during this study.



2005 IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition (CVPR’05) - Volume 2 - Volume
02, IEEE Computer Society, Washington, DC, USA, CVPR
’05, 60–65.

GOOSSENS, B., LUONG, Q., PIZURICA, A., AND PHILIPS, W.
2008. An improved non-local denoising algorithm. In 2008
International Workshop on Local and Non-Local Approxima-
tions in Image Processing, Tampere International Center for
Signal Processing, 143. invited paper.

GOOSSENS, B., LUONG, H., AELTERMAN, J., PIURICA, A.,
AND PHILIPS, W. 2010. A GPU-accelerated real-time
NLMeans algorithm for denoising color video sequences. In
Advanced Concepts for Intelligent Vision Systems, J. Blanc-
Talon, D. Bone, W. Philips, D. Popescu, and P. Scheun-
ders, Eds., vol. 6475 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 46–57.


