THERMAL (HEAT TRANSFER) ANALYSIS:
Steady - state heat transfer (Time-independent)
*) Conduction \longrightarrow Solis-Solio
*2) Convection \rightarrow Solid - Fluid
3) Radiation \rightarrow Emmision of electromagnetic wane

1) Conduction: THERMALLY ISOTROPIC MATERIAL MATLL GOVERNING EQIN: FOURIER Eq'N: $q_{x}=-k \frac{\partial T}{\partial x}>$ TEMP.

$$
T \equiv \operatorname{Temp} . f(\in L D \quad T(x)
$$

$k \equiv$ Thermal Conductwity
Coff. HEAT THERMAL GRADIENT
a Coff.
$q \equiv$ heat Flux (Conduction)
flux
2) Convection:

OBJECTIVE:
DETERMINE
TEMP. DISTRIBUTION
Givén thermal properties y nature of heat INPUT (OR loss)
$A \equiv$ surface area

Heat balance Condition:

$$
a n \cdot \pi a / d v-1 d \cdot \partial q, a
$$

$$
q A^{\prime}+\varphi_{A} d x=\left(q+\frac{\partial q}{\partial x}\right) A
$$

$-\frac{\partial q}{\partial x}+\varphi d x=0 \quad$ susst. for of From FOURIER EG' N, NOTNG normal derivanve.

$$
\frac{d}{d x}\left(k \frac{d T}{d x}\right)+\varphi d x=0 \quad \begin{gathered}
\text { Governing eauire. } \\
E O N T D B E
\end{gathered}
$$

$$
E \subset N T B B E
$$

Solved to obTan TEMP. DISTRIBUTION

one-dim element (2 D.OIF. SCACAR QCAHNTITy
S
assumed temperamire fird!
(simlcar to assumed disp. Fridi in structrral Avilysis)

MATRIX

$$
[B]=\left[\begin{array}{ll}
\frac{d N_{1}}{d x} & \frac{d N_{2}}{d x}
\end{array}\right]=\frac{1}{L}\left[\begin{array}{ll}
-1 & 1
\end{array}\right]
$$

minimization of Potental energy:

$$
\pi=\pi \pi_{+} \Omega_{n}+\Omega_{0}+\Omega_{p}
$$

$$
\begin{aligned}
& \{T\}=\left[\begin{array}{c}
N \\
l_{\text {SHAPE }}
\end{array}\right\}\left\{\begin{array}{l}
T_{1} \\
T_{2}
\end{array}\right\} \\
& \text { Etricton } \\
& \frac{d T}{d x}=\frac{d[N]}{d x}\left\{\begin{array}{l}
T_{1} \\
T_{2}
\end{array}\right\} \\
& \begin{array}{l}
{[N]=\left[\begin{array}{ll}
N_{1} & N_{2}
\end{array}\right]} \\
N_{1}=1-\frac{X}{L}
\end{array} N_{2}=\frac{X}{L} \\
& \text { [B] TEMP. DIST. VS. NDDAAC TEMP. }
\end{aligned}
$$

$$
\begin{aligned}
& t I=\text { lond. }+ \text { Cons. } \\
& \left.T I=\frac{1}{2} \iiint_{\text {Vol. }}\left[k_{x x}\left(\frac{d T}{d x}\right)^{2}\right] d V o 1 .\right)+\iint_{A R E A} h[N]^{T}[N] d A \\
& \Omega_{Q}=-\iiint_{V G l .} \varphi \cdot T d u d T \Omega_{q}=\iint_{\substack{\text { ScuFF. } \\
\text { of H. aux }}} q T d s
\end{aligned}
$$

$$
\begin{aligned}
& \text { MATRIX } L \text { EFF. MATRIX } \\
& {[k]=\int_{0}^{L}\left[\begin{array}{c}
-\frac{1}{L} \\
\frac{1}{L}
\end{array}\right] k_{x x}\left[\begin{array}{ll}
-\frac{1}{L} & \frac{1}{L}
\end{array}\right] \underbrace{A d x}_{d v o d x}+\iint_{S} h\left[\begin{array}{c}
-\frac{1}{L} \\
\frac{1}{L}
\end{array}\right]\left[\frac{1}{L} \frac{1}{c}\right] \underline{I} \underline{d x}} \\
& P d x=\text { SURFACE for } \\
& \text { CONVECTION }
\end{aligned}
$$

$$
[k]=\frac{\Gamma_{1}}{=}\left(\begin{array}{ll}
-1 & 1
\end{array}\right]+\frac{h P l}{\frac{h}{6}}\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

Fore stiffness isp. $\left[\begin{array}{c}c_{c}\end{array}\right]+\left[\begin{array}{l}\left.k_{n}\right]\end{array}\right.$

$$
\{F\}=[k]\left\{\begin{array}{l}
\uparrow \\
\}
\end{array}{ }^{\text {ConDuction }}\right.
$$

Convection
structural Analysis

$$
\left\{\begin{array}{c}
\{q\} \\
\substack{\downarrow \\
\text { HeAT } \\
\text { flux }} \\
\substack{\downarrow \\
\text { ConducTivryy }} \\
\substack{\downarrow \\
\text { TEMP. } \\
\text { Field }} \\
\end{array}\right.
$$

Two-dim. heat element 3-node triangle

$$
[x]=\left[k_{c}\right]+\left[k_{h}\right]
$$

$$
=\iiint[B]^{\top}[D][B] d v d+\iint h[B]^{\top}[B] d s
$$

$$
\left[\begin{array}{cll}
\downarrow k_{x x} & 0 \\
0 & k_{y y}
\end{array}\right] \text { ELICNENT THESES } \begin{array}{ll}
\text { WILL BE } \\
\text { INCORPORATED }
\end{array}
$$

UNITS:

$$
k=\frac{W}{m \cdot{ }^{\circ} \mathrm{C}} \quad \text { oR } \quad \frac{B T U}{h r-{ }^{\circ} F-f t}
$$

$$
\begin{aligned}
& \{T\}=\left[\begin{array}{lll}
N_{1} & N_{2} & N_{3}
\end{array}\right]\left\{\begin{array}{l}
T_{1} \\
T_{2} \\
B_{3}
\end{array}\right\} \\
& N_{i}=\frac{1}{2 A}(\underbrace{\alpha_{i}+\beta_{i} x+\gamma_{i} y}_{\substack{\text { NEAR } \\
\text { APPROX. }}}) \quad\left\{\begin{array}{l}
\alpha_{i}=x_{i} y_{k}-y_{j} x_{k} \\
\beta_{i}=y_{i}-y_{k} \\
\gamma_{i}=x_{k}-x_{j}
\end{array}\right.
\end{aligned}
$$

$$
\begin{array}{lll}
Q=\frac{W}{m^{3}} & O R & \frac{B T U}{h r-f t^{3}} \\
q=\frac{W}{m^{2}} & O R & \frac{B T U}{h r-f t^{2}} \\
h=\frac{W}{m^{2} \cdot{ }^{\circ} \mathrm{C}} & O R & \frac{B T U}{h r-f t^{2}-O f}
\end{array}
$$

HeAT TRANSFER MODELING:

1) same element Geom. as structural analysis. IF A SUBSEQUENT THERMAL STRESS ANALYSIS IS TO be PERFORMED, WE WANT TO follow THE ELEMENT RULES FOR STRUCTURAL ANALYSIS.
3-node CST, 4-ndde TET ARE PERFECTLy fine for PURE HIT.' ANA LYSIS BUTT NOT VALID FOR THERMS / STRUCTURe AL ANALYSIS.
FOR ONE-DIM. MODE 2, SIMPLE TRLISS/ROD ELEM. IS FINE. IF HEAT OR TEMP. DIST. ACROSS THICKNESS is REQUIIRED, WE SHOILD LISE AN EquIV. "BEAM" FORMULATION.
"SHELL" DEMENT FORMULATION IS USUALLY EMPLOYED FOR 2-D MSDELING wHERE SURFACE HEAT Flux (normal to surface) is present.
2) LSE OF SYMMETRY:

MODE 2

Thermal (zero heat sym. flux)

THERMAL STRESS:
2 Concepts leading to Presence of thermal STRESS.

1) LINIFORM MATERIAC PROPERTY (ISOTROPIC), GUPLED WITH A TEMPERATURE GRADIENT INDIE MATERIAL
$\sqrt{ }$ 2) UNIFORM TEMP. CulLED WITTI INTERACTION OF DIFFERENT MATERIAL COFF. OF THERMAL EXPANSION Properties.

STRAIN OF THERMAL

$$
\left[\frac{1}{o f}\right] \text { or }\left[\frac{1}{{ }^{\circ} \mathrm{c}}\right]
$$

$$
\left[\frac{1}{O R}\right] O R\left[\frac{1}{o k}\right]
$$

OVERALL STRAIN (DUE TO THERMAL Y STRUCTURAL

