Introduction to Computer Security Study question for midterm exam

Draft questions I am considering for the exam. Please consider past study questions, past exams, and these questions when preparing for the exam.

Some of the questions below may be simplified for the exam.

- 1. (a) In English, state the security policy for a voting system. Identify which requirements address confidentiality, integrity, and availability concerns.
 - (b) Summarize the vote stealing attack presented in the Felton paper.
 - (c) What aspects of the security policy does the vote stealing attack violate?
 - (d) Felton also sketches denial of service attacks; describe a denial of service attack.
 - (e) What aspects of the security policy does the denial of service attack violate?
- 2. Use the Biba integrity model to propose a formal integrity policy for an idealized voting machine based on the Diebold machine Fenton studied.

System Components:

- Hardware
 - Processor
 - Volatile Memory
 - EPROM
 - On-board flash
 - Removable Flash (key access)
 - Printer (key access)
 - Smart card reader (open)
- Software
 - Boot loader
 - Operating System
 - Task Manager
 - Voting Software
- Logical Operations
 - (a) Update boot loader
 - (b) Update OS and applications
 - (c) Define Ballot
 - (d) Start election
 - (e) Vote

- (f) End election
- (g) Post-election reporting
- (a) Use the Biba integrity model to describe a formal integrity policy for the voting machine. Identify the subjects, objects, and integrity levels explicitly.
- (b) Argue that the intended operations can be carried out by appropriate subjects without violating the policy.
- (c) Argue that if mechanisms were in place to enforce the policy that Fenton's vote stealing and denial of service attacks would not be allowed.
- (d) Suggest mechanisms to implement the policy.
- 3. A question like this based on the Clark-Wilson model.
- 4. Information-flow security.

Consider the four program fragments:

```
1  1 := h
2  h := 1
3  1 := false; if h then 1 := true
4  h := false; if 1 then h := true
```

- (a) Assume h > 1. Explain informally which flows are desired and which flows should be prevented (undesired flows).
- (b) Which flows are direct; which are indirect?
- (c) Use the type system presented in Sabelfeld and Myers (reproduced separately) to show the desired flows are allowed.
- (d) Use the type system to argue that the undesired flows are not allowed.