
1

9/28/06 15:22

Lecture 2:
Access Control

James Hook

CS 591: Introduction to
Computer Security

9/28/06 15:22

Objectives

• Introduce the mechanism of Access
Control

• Relate mechanism to Confidentiality,
Integrity and Availability

• Introduce the Access Control Matrix
Model and Protection State Transitions

2

9/28/06 15:22

Alice and Bob

• Standard names for “agents” in a
security or crypto scenario

• Also known as “A” and “B”

9/28/06 15:22

An Access Control Scenario

• Alice:
1. New Secret foo

• Bob:

2. If (cp foo afoo)
3. then echo “success”
4. else echo “fail”

Intent:

•Bob’s cp is attempting to violate Alice’s expected access policy

•If cp succeeds then the principle of confidentiality is not
satisfied

Q: Revise scenario to violate availability

3

9/28/06 15:22

Characterizing the Violation

Basic Abstraction: States and Transitions

0

1

2 4

A: New Secret foo

3 5

B: echo “success”B: echo “fail”

B: cp foo afooB: cp foo afoo

Q: What are the States?

Q: If we reach State 5 was State 1 good?
Q: What determines if we reach State 2 or 4 from State 1?

9/28/06 15:22

Secure and non-Secure States

Characterize states in a system as
“Secure” and “non-Secure”

A system is Secure if every transition
maps Secure states to Secure states

Consequence: In the scenario, security is
compromised if Alice’s “New secret foo”
yields a state in which Bob can access
foo.

4

9/28/06 15:22

Abstraction

X=17,y=23,z=-20,…

X=42,y=17,z=25,…

X < y X ¸ yAbstract state:

Concrete state:

X=17,y=23,z=-21,…

X=17,y=23,z=-22,…

9/28/06 15:22

Protection States

An abstraction that focuses on security
properties

Primarily interested in characterizing Safe states
Goal is to prove that all operations in the

system preserve “security” of the protection
state

Access Control Matrix is our first Protection
State model

5

9/28/06 15:22

Access Control Matrix Model

– Lampson ‘71, refined by Graham and Denning (‘71, ‘72)

– Concepts
– Objects, the protected entities, O
– Subjects, the active entities acting on the objects, S
– Rights, the controlled operations subjects can

perform on objects, R

– Access Control Matrix, A, maps Objects and
Subjects to sets of Rights

– State: (S, O, A)

9/28/06 15:22

Confidentiality Scenario

0

1

2 4

A: New Secret foo

3 5

B: echo “success”B: echo “fail”

B: cp foo afooB: cp foo afoo

Initial State
Subjects S0 = {A,B}
Objects O0 = {}
AC Matrix A0 = {}

Rights R = {r,w,own}

Intended State 1
Subjects S1 = {A,B}
Objects O1 = {foo}
AC Matrix A1 = { (A,foo,[r,w,own]),

(B,foo,[])}

(S0, O0, A0) `A: New Secret foo (S1, O1, A1)

(S1, O1, A1) `B: cp foo afoo (S1, O1, A1)

6

9/28/06 15:22

Confidentiality Scenario

0

1

2 4

A: New Secret foo

3 5

B: echo “success”B: echo “fail”

B: cp foo afooB: cp foo afoo

Initial State
Subjects S0 = {A,B}
Objects O0 = {}
AC Matrix A0 = {}

Rights R = {r,w,own}

States 1, 2 and 3
Subjects S1 = {A,B}
Objects O1 = {foo}
AC Matrix A1 = { (A,foo,[r,w,own]),

(B,foo,[]) }

Is there a representation for Protection
States 4 and 5?

Critical issue is
definition of `cp … …

9/28/06 15:22

Availability Scenario

0

1

2 4

A: New Public foo

3 5

B: echo “success”B: echo “fail”

B: cp foo afooB: cp foo afoo

Initial State
Subjects S0 = {A,B}
Objects O0 = {}
AC Matrix A0 = {}

Rights R = {r,w,o}

State 1
Subjects S1 = {A,B}
Objects O1 = {foo}
AC Matrix A1 = { (A,foo,[r,w,o]),

(B,foo,[r])}

(S0, O0, A0) `A: New Public foo (S1, O1, A1)

(S1, O1, A1) `B: cp foo afoo (S4, O4, A4)

State 4
Subjects S4 = S1
Objects O4 = O1 [{afoo}
AC Matrix A4 = { (A,foo,[r,w,o]),

(B,foo,[r]),
(A,afoo,[]),
(B,afoo,[r,w,o])}

7

9/28/06 15:22

Voting Machine

• How can a voting machine be modeled
with subjects, objects, and rights?

• In what ways do the rights change
dynamically?

9/28/06 15:22

A Domain-Specific Language
for Access Control

• Harrison, Ruzzo, and Ullman defined a set of
primitive commands
– Create subject s
– Create object o
– Enter r into a[s,o]
– Delete r from a[s,o]
– Destroy subject s
– Destroy object o

• We will use this DSL of primitive commands
to model the system in our example

Heads up
:

We have
2 langu

ages: H
RU

primitives a
nd

the exa
mple!

8

9/28/06 15:22

HRU Semantics

(S, O, A) `Create subject s (S [{s}, O, A)

(S, O, A) `Create object o (S, O [{o}, A)

(S, O, A) `Enter r into a[s,o] (S, O, A’)
where A’[s,o] = A[s,o] [{r}

(S, O, A) `Delete r from a[s,o] (S, O, A’)
where A’[s,o] = A[s,o] - {r}

(S, O, A) `Destroy subject s (S - {s}, O, Aº)

(S, O, A) `Destroy object o (S, O - {o}, Aº)
where Aº is the appropriate restriction of A

9/28/06 15:22

Molecules from Atoms

• This DSL gives us atomic transitions
• To model a system we combine these

atomic operations into commands
• A system model in this framework is the

set of commands that implement the
system primitives

9

9/28/06 15:22

Modeling the Example

• Interface
– X: New Secret <f>
– X: New Public <f>
– X: Cp <f> <f>
– X: If <command> then <command> else

<command>
• Assumptions

– X ranges over {A,B}

9/28/06 15:22

Example

Initialize ()
create subject A
create subject B

end
New.Secret (x,f)

create object f
enter own into a[x,f]
enter r into a[x,f]
enter w into a[x,f]

end

New.Public (x,f)
create object f
enter own into a[x,f]
enter r into a[A,f]
enter r into a[B,f]
enter w into a[x,f]

End

10

9/28/06 15:22

Example (cont)

Cp(x,src,dest)
if r 2 a[x,src]
then

create object dest
enter own into a[x,dest]
enter w into a[x,dest]
?

End Modeling helps us be
precise: Is the new file
“public” or “secret”?

Conditional command

9/28/06 15:22

Modeling if

• How do we model the if statement in our
scenario?

• We assumed Unix like “exit status”
• Could enrich model to have statements have

value
• Does that add value?

11

9/28/06 15:22

Modeling if (cont)

• To establish system security we must model all
sequences of commands

• What matters is that cp won’t reveal Alice’s secret
• Since we are considering all sequences of non-

conditional commands we don’t need to model
If c1 then c2 else c3

since we model both
 c1; c2
 c1; c3

• Why doesn’t this argument apply to primitive
commands?

9/28/06 15:22

Conditional Commands

• To obtain results in Chapter 3 we place technical
restrictions on HRU conditional commands

• Condition must be “positive”
– r 2 a[s,o]
– Cf. negative: r ∉ a[s,o]

• Conjunctions of conditions are allowed
– r 2 a[s,o] Æ r’ 2 a[s’,o’]

• Disjunctions are unnecessary
– All atomic actions are idempotent
– if φ Ç ψ then C ´ if φ then C; if ψ then C

12

9/28/06 15:22

Access Control Matrix

• Very high fidelity model
• Every user and process can be modeled as a

subject
• Every file and process can be modeled as an

object
• Does it scale?
• Is it useful?

9/28/06 15:22

Access Control Matrix

• The access control matrix model is a critical
reference point
– most systems can be modeled within the

framework
– most mechanisms are an imperfect

approximation of the Access Control Matrix

13

9/28/06 15:22

Foundational Results

• Can we use an algorithm to test if a
system is secure?
– What do we mean by “system”?
– What do we mean by “secure”?

9/28/06 15:22

Aside: Safety and Liveness

• Safety property: A bad thing does not
happen
– E.g. A memory safe program will not

dereference a “bad” pointer

• Liveness property: A good thing will
happen eventually
– E.g. Every runnable process will eventually

be scheduled

14

9/28/06 15:22

Security: safe or live?

• Availability is often a liveness property
• Confidentiality is often cast as a safety

property
• Integrity can be both

– The processor will execute the instruction stream
is a liveness property

– All memory will be accessed consistent with the
protection state is a safety property

9/28/06 15:22

Bounding the Problem

• “Mono-operational” commands
– If each system level command in the modeled

system is implemented by a single HRU primitive
the system is “mono-operational”

• General case
– In the general case the commands of the system

being modeled are implemented by arbitrary
combinations of HRU primitives

• Cast Problem as Safety Property
– Bad things don’t happen

15

9/28/06 15:22

What is secure?

• Must designate a “bad thing” and then prove
it doesn’t happen

• Definition: A right r is leaked if it is added to
an element of the access control matrix that
does not already contain it
– In our example “new secret foo” leaks rights “own,

r and w” if foo did not already exist

• Definition: A system is safe with respect to
right r if it does not leak the right r

9/28/06 15:22

Follow Bishop

If time permits in this lecture jump to
Bishop’s slide #03-04

16

9/28/06 15:22

Conclusion

• Modeling is the process of abstracting to the
essence of the property of concern

• Security Modeling exploits “protection state”
abstractions

• Access Control Matrix is a “best” model for
file and process granularity modeling

• With virtually any realistic system the general
security question will be undecidable

9/28/06 15:22

Looking Forward

• Complete Chapter 3
• Start Chapter 4, Security Policies

17

9/28/06 15:22

Backup Materials

9/28/06 15:22

A scenario from the text

• Bishop models a language with interface:
– Create.file(p,f)
– Spawn.process(p,q)
– Make.owner(p,f)
– Grant.read.file.1(p,f,q)
– Grant.read.file.2(p,f,q)
– Grant.write.file.1(p,f,q)
– Grant.write.file.2(p,f,q)

• Some of his examples follow

18

9/28/06 15:22

Commands

Command create.file (p,f)
create object f;
enter own into a[p,f];
enter r into a[p,f];
enter w into a[p,f];

end

9/28/06 15:22

Commands (cont)

Command spawn.process(p,q)
create subject q;
enter own into a[p,q];
enter r into a[p,q];
enter w into a[p,q];
enter r into a[q,p];
enter w into a[q,p];

End

19

9/28/06 15:22

Conditional Commands

Command grant.read.file.1(p,f,q)
if own in a[p,f]
then

enter r into a[q,f]
End

9/28/06 15:22

Root Agent

Create subjects voter, tallyAgent, reporter
Create objects vote, state, tally,

voterCard
Initialize tally=0
Enter

20

9/28/06 15:22

Voter Agent

Repeat Indefinitely:
Present credential;
If credential accepted then
 Prepare ballot;
 Confirm vote;
Withdraw credential

9/28/06 15:22

Tally Agent

While (mode = election) do
On credential presented do
 If credential valid then
 Enable voting;
 On vote commit do atomic
 add vote to tally
 invalidate credential

