
5/3/06 15:40

Confinement

James Hook

CS 591: Introduction to
Computer Security

5/3/06 15:40

The Confinement Problem

• Lampson, “A Note on the Confinement
Problem”, CACM, 1973.
This note explores the problem of confining a

program during its execution so that it canot
transmit information to any other program
except its caller. A set of examples attempts
to stake out the boundaries of the problem.
Necessary conditions for a solution are
stated and informally justified.

5/3/06 15:40

Possible Leaks

0. If a service has memory, it can collect data,
wait for its owner to call it, then return the
data

1. The service may write into a permanent file
2. The service may create a temporary file
3. The service may send a message to a

process controlled by its owner [via ipc]
4. More subtly, the information may be

encoded in the bill rendered for the
service…

5/3/06 15:40

Possible Leaks (cont)

5. If the system has interlocks which
prevent files from being open for
writing and reading at the same time,
the service can leak data if it is merely
allowed to read files which can be
written by the owner.

5/3/06 15:40

Leak 5 (cont)
The interlocks allow a file to simulate a shared Boolean

variable which one program can set and the other
can’t

Given a procedure open (file, error) which does
goto error if the file is already open, the following
procedures will perform this simulation:
procedure settrue (file);
 begin loop1: open (file, loop1) end;
procedure setfalse (file);
 begin close (file) end;
Boolean procedure value (file);
 begin value : = true;
 open (file, loop2);
 value := false;
 close (file);

 loop2:
 end;

5/3/06 15:40

Leak 5 (cont)
Using these procedures and three files called data, sendclock, and

receiveclock, a service can send a stream of bits to another
concurrently running program. Referencing the files as though
they were variables of this rather odd kind, then, we can
describe the sequence of events for transmitting a single bit:

sender: data : = bit being sent;
sendclock : = true

receiver: wait for sendclock = true;
received bit : = data;
receive clock : = true;

sender: wait for receive clock = true;
sendclock : = false;

receiver: wait for sendclock = false;
receiveclock : = false;

sender: wait for receiveclock = false;

5/3/06 15:40

Leak 6

6. By varying its ratio of computing to
input/output or its paging rate, the service
can transmit information which a
concurrently running process can receive by
observing the performance of the system.
…

5/3/06 15:40

One solution

• Just say no!
• Total isolation: A confined program shall

make no calls on any other program
• Impractical

5/3/06 15:40

Confinement rule

• Transitivity: If a confined program calls
another program which is not trusted, the
called program must also be confined.

5/3/06 15:40

Classification of Channels:

• Storage
• Legitimate (such as the bill)
• Covert

– I.e. those not intended for information transfer at
all, such as the service program’s effect on the
system load

• In which category does Lampson place 5?

5/3/06 15:40

Root Problem:

• Resource sharing enables covert
channels

• The more our operating systems and
hardware enable efficient resource
sharing the greater the risk of covert
channels

5/3/06 15:40

Resources

• Lampson, A note on the Confinement
Problem, CACM Vol 16, no. 10, October
1973.
– http://doi.acm.org/10.1145/362375.362389

5/3/06 15:40

Discussion

• Bishop’s slides for Chapter 16 (with
some minor modifications to one
example)

5/3/06 15:40

Virtualization

• Virtualization is returning to the
mainstream with Intel’s Virtualization
Technology (aka Vanderpool)

• Discussion following Bishop’s slides for
Chapter 29
– Secret decoder ring:

• PSL = Processor Status Longword (a vax status
register)

5/3/06 15:40

Applications of Virtualization

• Workload isolation
• Workload consolidation
• Workload migration
• (See Uhlig, et al, Fig 1)

5/3/06 15:40

Virtualizing Intel architectures
• As is, Intel architectures do not meet the two

requirements:
– Nonfaulting access to privileged state

• IA-32 has registers that describe and manipulate the
“global descriptor table”

• These registers can only be set in ring 0
• They can be queried in any ring without generating a fault

– This violates rule 2 (all references to sensitive
data traps)

• Software products to virtualize Intel hardware
had to get around this.
– Vmware dynamically rewrote code!

5/3/06 15:40

Intel solutions

• VT-x, virtualization for IA-32
• VT-i, virtualization for Itanium

• Changed architecture to meet the
criteria

5/3/06 15:40

Ring aliasing and ring
compression

• Solution is to allow guest to run at
intended privilege level by augmenting
privilege levels.

• See Figure 2(d).

5/3/06 15:40

Nonfaulting access to
privileged state

• Two kinds of changes
– Make access fault to the VM
– Allow nonfaulting access, but to state

under the control of the VMM

5/3/06 15:40

• Intel Virtualization Paper
– ftp://download.intel.com/technology/comp

uting/vptech/vt-ieee-computer-final.pdf

