CS 581: Theory of Computation
 Fall 2011
 Mid-term exam
 James Hook

This is a closed-notes, closed-book exam.

1. [25 points] Regular Languages
(a) Construct a DFA that accepts binary numbers congruent to 3 mod
2. (The string ϵ represents the number 0.) [The set of numbers congruent to $3 \bmod 4$ are those numbers than when divided by 4 yield a remaineder of 3 . They include $3,7,11,15, \ldots$..]

- [Issue] Some students gave correct rules with incorrect sketches.
(b) Give the definition of acceptance of a string by a DFA.
- [5 points] Correct.
- [3-4 points] Looks like a definition
- [1-2 points] Informal description.
- Many students didn't seem to really understand the difference between a set of states and a sequence of states. In particular, where the definition of acceptance requires a sequence of states $r_{0}, r_{1}, \ldots, r_{n}$ the students used all of Q. Then they quantified over all elements of Q rather than over all positions in the sequence $0 \leq i \leq n$.
(c) Illustrate the definition by showing an example of a string accepted by the DFA and a string not accepted by the DFA.
- The intended DFA was the one from part a.
- [5 points] Illustrates definition with a positive and a negative example.
- [3 points] Illustrates definition with one example.
- [2 points] Two examples, but doesn't illustrate definition.
- [1 point] One example, not illustrative.
(d) Is your DFA minimal? Justify.
- [5 points] Correct and justified by Myhill Nerode.
- [3-4 points] Wrong, but justification is systematic and applying relevant general results.
- [3-4 points] Right, but justification is ad hoc.
- [2 points] Wrong, ad hoc.
(e) Give a minimal DFA for the language. (If your DFA was already minimal then refer to earlier construction.)

2. [25 points] Non-regular languages.

Let A be the language over $\{a, b\}^{*}$ of strings containing at least as many b 's as a 's. Show that A is not regular.

- [25 points] Correct solution.
- [20 points] Minor repair.
- [15 points] Significant repair.
- [5-10 points] Significantly flawed application of an appropriate general argument. (Pumping lemma, Myhill Nerode)
- [5 points] Good start, but not sufficiently complete to critique.

3. [25 points] Context Free Languages

In the homework you showed the language $A=\{x \# y \mid x \neq y\}$ is context free. We reviewed a solution to this problem in lecture.
(a) [15 points] Give a grammar that generates A or a PDA that recognizes A. Justify why the solution is correct.

- [8 points] Construction
- [8 points] Correct construction
- [6 points] Incorrect construction related to problem but specific enough to critique
- [4 points] Prose description consistent with a correct construction.
- [7 ponits] Justification
- [7 points] Good justification
- [6 points] Helpful justificaiton, but bits are puzzling.
- [3 points] Sketch of justification.
(b) [5 points] Illustrate your solution by describing how it generates or recognizes the string $010 \# 000$.
- [5 points] Correct; supported by calculation.
- [3 points] A good story
- [2 points] I say so
(c) [5 points] Argue systematically that the string $000 \# 000$ is not accepted by your machine or generated by your grammar.
- [5 points] Correct; explicitly considers all nondeterministic executions.
- [3 points] A good story
- [2 points] I say so

4. [25 points] Context Free Pumping Lemma

Use the pumping lemma for context free languages to show that the complement of the language A in the previous question is not a Context Free

Language. If you would like you may also use closure properties. In my solution I show $\bar{A} \cap\left((0 \cup 1)^{*} \#(0 \cup 1)^{*}\right)$ is not context free, which is an equivalent problem.

- [5 points] Right quantifier structure
- [5 points] Good s
- [5 points] Good cases
- [10 points] Good details
- [8 points] Minor repair
- [5 points] Sketched with no false statements

