Claim 1: The Regular languages are closed under reverse.
Proof: Given a regular language A, show that the language A^{R} is regular. Since A is regular, there is a DFA $M=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle$ that recognizes it. From this construct an NFA M^{\prime} that recognizes A^{R}.

Construction: $M^{\prime}=\left\langle Q \cup\left\{q_{0}^{\prime}\right\}, \Sigma, \delta^{\prime}, q_{0}^{\prime},\left\{q_{0}\right\}\right\rangle$ where

$$
\begin{array}{lll}
\delta^{\prime}\left(q_{0}^{\prime}, \epsilon\right)=F & & \left(\delta^{\prime} .1\right) \\
\delta^{\prime}\left(q_{0}^{\prime}, a\right)=\emptyset & \text { all } a \in \Sigma & \left(\delta^{\prime} .2\right) \\
\delta^{\prime}(p, a)=\{q \mid \delta(q, a)=p\} & \text { all } q \in Q, a \in \Sigma & \left(\delta^{\prime} .3\right)
\end{array}
$$

Claim 2: $L\left(M^{\prime}\right)=A^{R}$. We prove this by showing (2.1) $w \in L(M) \rightarrow w^{R} \in$ $L\left(M^{\prime}\right)$ and $(\mathbf{2 . 2}) w^{R} \in L\left(M^{\prime}\right) \rightarrow w \in L(M)$ (or equivalently $w \in L\left(M^{\prime}\right) \rightarrow$ $\left.w^{R} \in L(M)\right)$.

Proof of 2.1: Since $w \in L(M)$ we know that $w=w_{1} w_{2} \ldots w_{n}$ and there exists states $r_{0}, r_{1}, \ldots, r_{n}$ such that $r_{0}=q_{0}, r_{n} \in F$, and $\forall i, 0<i \leq n, r_{i}=$ $\delta\left(r_{i-1}, w_{i}\right)$.

In this case M^{\prime} will accept w^{R}, which will be rewritten equivalently as $\epsilon w_{n} w_{n-1} \ldots w_{1}$, with the state sequence $q_{0}^{\prime}, r_{n}, r_{n-1}, \ldots, r_{1}$. Note that q_{0}^{\prime} and $r_{1}=q_{0}$ are initial and final states for M^{\prime}, so to complete the argument that w^{R} is accepted we only need to show each transition is valid for M^{\prime}.

The first transition satisfies $r_{n} \in \delta^{\prime}\left(q_{0}^{\prime}, \epsilon\right)$ since by $\left(\delta^{\prime} .1\right)$ this reduces to the previously established $r_{n} \in F$.

The remainder of the transitions are of the form: $r_{i-1} \in \delta^{\prime}\left(r_{i}, w_{i}\right)$. By ($\delta^{\prime} .3$) this becomes $r_{i-1} \in\left\{q \mid \delta\left(q, w_{i}\right)=r_{i}\right\}$. This follows immediately from $\delta\left(r_{i-1}, w_{i}\right)=r_{i}$ which was established by $w \in L(M)$.

Proof of 2.2: Since $w \in L\left(M^{\prime}\right)$ we know that $w=w_{1} w_{2} \ldots w_{n}$ and there are states $r_{0}, r_{1}, \ldots, r_{n}$ such that $r_{0}=q_{0}^{\prime}, r_{n} \in\left\{q_{0}\right\}$, and $r_{i+1} \in \delta^{\prime}\left(r_{i}, w_{i+1}\right)$.

Furthermore, since clauses ($\delta^{\prime} .1$) and ($\delta^{\prime} .2$) define all transitions on q_{0}^{\prime}, we know that $w_{1}=\epsilon$ and $r_{1} \in F$. Since all other transitions are defined by clause ($\delta^{\prime} .3$) we know that states $r_{1}, r_{2}, \ldots, r_{n}$ are in Q, the state space of the DFA M.

We need to show that $w^{R} \in L(M)$. We will do this by showing that M accepts $w_{n} w_{n-1} \ldots w_{2}$ with the state sequence $r_{n}, r_{n-1}, \ldots, r_{1}$. First note that r_{n} is q_{0} and $r_{1} \in F$. It remains to show that $r_{i-1}=\delta\left(r_{i}, w_{i}\right)$.

Since $w \in L\left(M^{\prime}\right)$, we know that $r_{i} \in \delta^{\prime}\left(r_{i-1}, w_{i}\right)$. That is $r_{i} \in\left\{q \mid \delta\left(q, w_{i}\right)=\right.$ $\left.r_{i-1}\right\}$. So, $\delta\left(r_{i}, w_{i}\right)=r_{i-1}$ as required.

