Claim 1: The Regular languages are closed under reverse.

Proof: Given a regular language A, show that the language A^R is regular. Since A is regular, there is a DFA $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ that recognizes it. From this construct an NFA M' that recognizes A^R .

Construction: $M' = \langle Q \cup \{q'_0\}, \Sigma, \delta', q'_0, \{q_0\} \rangle$ where

$\delta'(q'_0,\epsilon)$	=	F		$(\delta'.1)$
$\delta'(q'_0, a)$	=	Ø	all $a \in \Sigma$	$(\delta'.2)$
$\delta'(p,a)$	=	$\{q \delta(q,a)=p\}$	all $q \in Q, a \in \Sigma$	$(\delta'.3)$

Claim 2: $L(M') = A^R$. We prove this by showing (2.1) $w \in L(M) \to w^R \in L(M')$ and (2.2) $w^R \in L(M') \to w \in L(M)$ (or equivalently $w \in L(M') \to w^R \in L(M)$).

Proof of 2.1: Since $w \in L(M)$ we know that $w = w_1 w_2 \dots w_n$ and there exists states r_0, r_1, \dots, r_n such that $r_0 = q_0, r_n \in F$, and $\forall i, 0 < i \leq n, r_i = \delta(r_{i-1}, w_i)$.

In this case M' will accept w^R , which will be rewritten equivalently as $\epsilon w_n w_{n-1} \dots w_1$, with the state sequence $q'_0, r_n, r_{n-1}, \dots, r_1$. Note that q'_0 and $r_1 = q_0$ are initial and final states for M', so to complete the argument that w^R is accepted we only need to show each transition is valid for M'.

The first transition satisfies $r_n \in \delta'(q'_0, \epsilon)$ since by $(\delta'.1)$ this reduces to the previously established $r_n \in F$.

The remainder of the transitions are of the form: $r_{i-1} \in \delta'(r_i, w_i)$. By $(\delta'.3)$ this becomes $r_{i-1} \in \{q | \delta(q, w_i) = r_i\}$. This follows immediately from $\delta(r_{i-1}, w_i) = r_i$ which was established by $w \in L(M)$.

Proof of 2.2: Since $w \in L(M')$ we know that $w = w_1 w_2 \dots w_n$ and there are states r_0, r_1, \dots, r_n such that $r_0 = q'_0, r_n \in \{q_0\}$, and $r_{i+1} \in \delta'(r_i, w_{i+1})$.

Furthermore, since clauses $(\delta'.1)$ and $(\delta'.2)$ define all transitions on q'_0 , we know that $w_1 = \epsilon$ and $r_1 \in F$. Since all other transitions are defined by clause $(\delta'.3)$ we know that states r_1, r_2, \ldots, r_n are in Q, the state space of the DFA M.

We need to show that $w^R \in L(M)$. We will do this by showing that M accepts $w_n w_{n-1} \dots w_2$ with the state sequence r_n, r_{n-1}, \dots, r_1 . First note that r_n is q_0 and $r_1 \in F$. It remains to show that $r_{i-1} = \delta(r_i, w_i)$.

Since $w \in L(M')$, we know that $r_i \in \delta'(r_{i-1}, w_i)$. That is $r_i \in \{q | \delta(q, w_i) = r_{i-1}\}$. So, $\delta(r_i, w_i) = r_{i-1}$ as required.