CS 581: Theory of Computation James Hook Final exam.

This is a closed-notes, closed-book exam. Each question is worth 20 points.

- 1. True or False.
 - (a) The Regular languages are closed under intersection.
 - (b) The Context free languages are closed under intersection.
 - (c) The Turing decidable languages are closed under intersection.
 - (d) The Turing recognizable languages are closed under intersection.
 - (e) All primitive recursive functions are total computable (recursive) functions.
 - (f) All total computable (recursive) functions are primitive recursive.
 - (g) In a reasonable proof system all true things are provable.
 - (h) In a reasonable proof system all provable things are true.
 - (i) In a reasonable proof system the set of all provable statements is Turing recognizable.
 - (j) In a reasonable proof system the set of all provable statements is Turing decidable.
- 2. Show that $\{a^n b^n | n \ge 0\}$ is of infinite index, and hence is not regular.
- 3. This problem focuses on the construction of a Push Down Automaton from a Context Free Grammar.

S

- (a) [4 points] Sketch the construction. You may use a variant of a PDA that allows for each transition to push a string of symbols.
- (b) [3 points] Apply the construction to the grammar:

$$\begin{array}{ccc} \rightarrow & SS \\ \mid & aSb \\ \mid & \epsilon \end{array}$$

- (c) [3 points] Demonstrate the construction by showing how the PDA behaves on the string *aababb*.
- (d) [10 points] Prove that if w is generated by the grammar above then it will be accepted by the machine constructed from that grammar. Note: this is only one direction of the equivalence proof.
- 4. Prove that the theory $Th(\mathcal{N}, +, \times)$ is undecidable [Sipser Theorem 6.13]. You may assume that there is a primitive recursive function implementing Kleene's *T*-predicate. You may assume that all "min-computable" functions are representable. Please summarize the properties of these results that are critical to your argument.
- 5. Define $ALL_{TM} = \{ \langle M \rangle | L(M) = \Sigma^* \}$. Prove that ALL_{TM} is undecidable.