Automata and Formal Languages =

Pumping Lemma & Distinguishability

Jim Hook Tim Sheard Portland State University

— Tim Sheard

Automata and Formal Languages

.ecture 8

Importance of loops

Consider this DFA. The input string 01011 gets accepted after an execution that goes through the state sequence $s \rightarrow p \rightarrow q \rightarrow p \rightarrow q \rightarrow r$. This path contains a loop (corresponding to the substring 01) that starts and ends at p. There are two simple ways of modifying this path without changing its beginning and ending *states*: n O Tim Sheard

Lecture 8

(1) delete the loop from the path;

(2) instead of going around the loop once, do it several times. As a consequence, we see that all strings of the form 0 (10) ⁱ11 (where i ≥ 0) are accepted.

Long paths must contain a loop

Suppose *n* is the number of states of a DFA. Then every path of length *n* or more visits at least *n*+1 states, and therefore must visit some state twice. Thus, every path of length *n* or longer must contain a loop.

Suppose L is a regular language, w is a string in L, and u is a non-empty substring of w. Thus, w=xuy, for some strings x, y. We say that u is a *pump* in w if all strings xuⁱy (that is, xy, xuy, xuuy, xuuuy, ...) belong to L.

Pumping Lemma. Let L be a regular language. Then there exists a number n, such that for all $w \in L$ such that $|w| \ge n$, there exists a prefix of w whose length is less than n which contains a pump. Formally: If $w \in L$ and $|w| \ge n$ then w = xyz such that

- 1. $y \neq \epsilon$ (y is the pump)2. $|xy| \le n$ (xy is the prefix)
- 3. $xy^iz \in L$

Definition. The number n associated to the regular language L as described in the Pumping Lemma is called the *pumping constant* of L.

Automata and Formal Languages

Proof

Lecture 8

Proving non-regularity

To prove that a given language is not regular, we use the Pumping Lemma as follows.

Assuming L is regular (we are arguing by contradiction!), let n be the pumping constant of L. Making no other assumptions about n (we don't know what it is exactly), we need to produce a string w \in L of length \geq n that does not contain a pump in its nprefix. This w depends on n; we need to give w for any value of n.

There are many substrings of the n-prefix of our chosen w and we must demonstrate that *none of them is a pump*. Typically, we do this by writing w=xuy, a decomposition of w into three substrings about which we can only assume that $u \neq \varepsilon$ and $|xu| \leq n$. Then we must show that *for some concrete i* (zero or greater) the string xuⁱy does not belong to L.

Skill required

Notice the game-like structure of the proof. Somebody gives us n. Then we give w of length \ge n. Then our opponent gives us a non-empty substring u of the n-prefix of w (and with it the factorization w =xuy of w). Finally, we choose i such that xuⁱy \notin L.

Our first move often requires ingenuity: We must find w so that we can successfully respond to whatever our opponent plays next.

We show that L={ $0^{k}1^{k}$ | k=0,1,2, ...} is not regular. Assuming the Pumping Lemma constant of L is n, we take w= $0^{n}1^{n}$. We need to show that there are no pumps in the n-prefix of w, which is 0^{n} . If u is a pump contained in 0^{n} then $0^{n} = xuz$, and xuuz must also be in the language. But since |u| > 0, if |xuz| = n then |xuuz| = m where m > n. So we obtain a string $0^{m}1^{n}$ with m>n, which is obviously not in L, so a contradiction is obtained, and are assumption that $0^{K}1^{K}$ is regular must be false.

Note. The same choice of w and i works to show that the language:

L={w \in {0,1}* | w contains equal number of 0s and 1s}

is not regular either.

- We show that L = { uu | $u \in \{a,b\}^*$ } is not regular. Let n be the pumping constant. Then we choose $w=a^nba^nb$ which clearly has length greater than n.
- The initial string a^n must contain the pump, u. So w = xuybaⁿb, and xuyb = a^n b. But pumping u 0 times it must be the case that xybaⁿb is in L too. But since u is not ε , we see that xyb $\neq a^n$ b, since it must have fewer a's. Which leads to a contradiction. Thus our original assumption that L was regular must be false.

Question. If in response to the given n we play $w=a^na^n$, the opponent has a chance to win. How?

The language $L = \{ w \in \{a,b,c\}^* \mid \text{ the length of } w \text{ is a perfect square} \}$ is not regular.

In response to n, we play any string w of length n^2 (which clearly has length greater than n). The opponent picks a pump u such that w = xuy; let k=|u| and we have

 $|xu^{i}y| = |xuy| + (i-1) |u| = n^{2} + (i-1)k.$

If we can find i such that $n^2+(i-1)k$ is not a perfect square, then we are led to a contradiction. A good choice is $i=kn^2+1$. In that case

 $n^{2}+(i-1)k =$ $n^{2}+(kn^{2}+1-1)k =$ $n^{2}+k^{2}n^{2} =$ $n^{2}(k^{2}+1)$, which is not a perfect square.

Myhill Nerode

The Myhill Nerode theorem is another characterization of the regular languages

- It uses a language to carve up the set of all strings into equivalence classes
- Intuitively these equivalence classes will correspond to states in a minimal DFA

Definition

x and y are *distinguishable* with respect to L if there is a z such that either xz is in L and yz is not in L or xz is not in L and yz is in L

in other words

x and y are *indistinguishable* wrt L if for all z, xz in L iff yz in L

 $A = \{a,b\}$

a and b are indistinguishable

epsilon is distinguishable from all other strings

- all strings other than epsilon, a and b are indistinguishable
- In other words, there are three equivalence classes for A: [epsilon], [a], [aa].

The number of equivalence classes induced by a language is called the *index* of the language (A is of index 3)

Homework

In homework you will show:

indistinguishable by L is an equivalence relation

- if L is recognized by a DFA with k states then L has index at most \boldsymbol{k}
- If L has finite index k, then it is recognized by a DFA with k states
- L is regular iff it has finite index. The index is the size of the smallest DFA recognizing L

What is the index of a^nb^n ? What are the equivalence classes of a^*b^* ? What is the index of a^*b^* ?