Pumping Lemma \& Distinguishability

Jim Hook
Tim Sheard Portland State University

Importance of loops

Consider this DFA. The input string 01011 gets accepted after an execution that goes through the state sequence $\mathrm{s} \rightarrow \mathrm{p} \rightarrow \mathrm{q} \rightarrow \mathrm{p} \rightarrow \mathrm{q} \rightarrow \mathrm{r}$. This path contains a loop (corresponding to the substring 01) that starts and ends at p . There are two simple ways of modifying this path without changing its beginning and ending states:

(1) delete the loop from the path;
(2) instead of going around the loop once, do it several times. As a consequence, we see that all strings of the form $0(10)^{\mathrm{i}} 11$ (where $\mathrm{i} \geq 0$) are accepted.

Long paths must contain a loop

Suppose n is the number of states of a DFA. Then every path of length n or more visits at least $n+1$ states, and therefore must visit some state twice. Thus, every path of length n or longer must contain a loop.

The pumping lemma

Suppose L is a regular language, w is a string in L , and u is a non-empty substring of w. Thus, $w=x u y$, for some strings x, y. We say that u is a pump in wif all strings xu ${ }^{i} y$ (that is, $x y$, xuy, xuuy, xuuuy, ...) belong to L .
Pumping Lemma. Let L be a regular language.
Then there exists a number n, such that for all $\mathrm{w} \in \mathrm{L}$ such that $|\mathrm{w}| \geq \mathrm{n}$, there exists a prefix of w whose length is less than n which contains a pump. Formally: If $w \in L$ and $|w| \geq n$ then $\mathrm{w}=\mathrm{xyz}$ such that

1. $y \neq \varepsilon \quad$ (y is the pump)
2. $|x y| \leq n \quad$ ($x y$ is the prefix)
3. $x y^{i} z \in L$

Definition. The number n associated to the regular language L as described in the Pumping Lemma is called the pumping constant of L .

Proof

$\mathrm{w} \in \mathrm{L}, \quad|\mathrm{w}| \geq \mathrm{n}, \mathrm{w}=\mathrm{xyz}$ such that $1 . \mathrm{y} \neq \varepsilon$ 2. $|\mathrm{xy}| \leq \mathrm{n}$ 3. $\mathrm{xy}^{\mathrm{i} z} \in \mathrm{~L}$
Let the DFA have m states. Let $|w| \geq m$. Consider the path from the start state s to the (accepting) state $\underline{\delta}(\mathrm{s}, \mathrm{w})$. Just following the first m arcs, we make $\bar{m}+1$ total visits to states, so there must be a loop formed by some of these arcs.
We can write w=opqr, where p corresponds to that loop, and $|\mathrm{opq}|=m$ (the prefix of size m). Thus let $n=|o p|, x=0, y=p$, and $z=q r$.

1) Since every loop has at least one arc, we know $|\mathrm{p}|>0$, thus $y \neq \varepsilon$
2) $|x y| \leq n$ because $x y=o p$ and $n=|o p|$
3) $x y^{i} z \in L$ because If p is a loop, its starts at state s_{i} and $\frac{\delta}{\delta}\left(s_{i}, p\right)=s_{i}$, and we know that $\delta\left(s_{i}, q r\right)=s_{\text {final. }}$. Thus $\underline{\bar{\delta}}\left(s_{\text {start }} \mathrm{x}\right)=\mathrm{s}_{\mathrm{i}}$, Thus for each $\mathrm{i} \underline{\delta}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{y}^{\mathrm{i}}\right)=\mathrm{s}_{\mathrm{i}}$, and were done.

Proving non-regularity

To prove that a given language is not regular, we use the Pumping Lemma as follows.
Assuming L is regular (we are arguing by contradiction!), let n be the pumping constant of L . Making no other assumptions about n (we don't know what it is exactly), we need to produce a string $w \in L$ of length $\geq \mathrm{n}$ that does not contain a pump in its n prefix. This w depends on n; we need to give w for any value of n.
There are many substrings of the n-prefix of our chosen w and we must demonstrate that none of them is a pump. Typically, we do this by writing $\mathrm{w}=\mathrm{xuy}$, a decomposition of w into three substrings about which we can only assume that $u \neq \varepsilon$ and $|x u| \leq n$. Then we must show that for some concrete i (zero or greater) the string xu'y does not belong to L .

Skill required

Notice the game-like structure of the proof. Somebody gives us n. Then we give w of length $\geq \mathrm{n}$. Then our opponent gives us a non-empty substring u of the n-prefix of w (and with it the factorization $\mathrm{w}=x u y$ of w). Finally, we choose i such that $x u^{\prime} y \notin \mathrm{~L}$.

Our first move often requires ingenuity: We must find w so that we can successfully respond to whatever our opponent plays next.

Example 1

We show that $L=\left\{0^{k} 1^{k} \mid k=0,1,2, \ldots\right\}$ is not regular. Assuming the Pumping Lemma constant of L is n, we take $w=0^{n} 1^{n}$. We need to show that there are no pumps in the n-prefix of w, which is 0^{n}. If u is a pump contained in 0^{n} then $0^{n}=x u z$, and xuuz must also be in the language. But since $|u|>0$, if $|x u z|=$ n then $|x u u z|=m$ where $\mathrm{m}>\mathrm{n}$. So we obtain a string $0^{m} 1^{n}$ with $m>n$, which is obviously not in L, so a contradiction is obtained, and are assumption that $0^{K} 1^{\mathrm{K}}$ is regular must be false.

Note. The same choice of w and i works to show that the language:

$$
L=\left\{w \in\{0,1\}^{*} \mid w \text { contains equal number of } 0 s \text { and } 1 s\right\}
$$

is not regular either.

Example 2

We show that $L=\left\{u u \mid u \in\{a, b\}^{*}\right\}$ is not regular. Let n be the pumping constant. Then we choose $\mathrm{w}=\mathrm{a}^{\mathrm{n}} \mathrm{ban}^{\mathrm{n}} \mathrm{b}$ which clearly has length greater than n.

The initial string a^{n} must contain the pump, u. So $\mathrm{w}=$ xuybanb, and xuyb $=\mathrm{a}^{n} \mathrm{~b}$. But pumping u 0 times it must be the case that xybanb is in L too. But since u is not ε, we see that $x y b \neq a^{n} b$, since it must have fewer a's. Which leads to a contradiction. Thus our original assumption that L was regular must be false.

Question. If in response to the given n we play $w=a^{n} a^{n}$, the opponent has a chance to win. How?

Example 3

The language $L=\left\{w \in\{a, b, c\}^{*} \mid\right.$ the length of w is a perfect square $\}$ is not regular.

In response to n, we play any string w of length n^{2} (which clearly has length greater than n). The opponent picks a pump u such that $w=x u y$; let $\mathrm{k}=|\mathrm{u}|$ and we have

$$
\left|x u^{i} y\right|=|x u y|+(i-1)|u|=n^{2}+(i-1) k .
$$

If we can find i such that $n^{2}+(i-1) k$ is not a perfect square, then we are led to a contradiction. A good choice is $\mathrm{i}=\mathrm{kn}^{2}+1$. In that case

$$
\begin{aligned}
& n^{2}+(i-1) k= \\
& n^{2}+\left(k n^{2}+1-1\right) k= \\
& n^{2}+k^{2} n^{2}= \\
& n^{2}\left(k^{2}+1\right), \text { which is not a perfect square. }
\end{aligned}
$$

Distinguishability

Automata and Formal Languages $\overline{\text { A }}$

The Myhill Nerode theorem is another characterization of the regular languages
It uses a language to carve up the set of all strings into equivalence classes
Intuitively these equivalence classes will correspond to states in a minimal DFA

Definition

x and y are distinguishable with respect to L if there is a z such that either $x z$ is in L and $y z$ is not in L or $x z$ is not in L and $y z$ is in L
in other words
x and y are indistinguishable wrt L if for all $z, x z$ in L iff $y z$ in L

Example

$A=\{a, b\}$
a and b are indistinguishable epsilon is distinguishable from all other strings
all strings other than epsilon, a and b are indistinguishable
In other words, there are three equivalence classes for A: [epsilon], [a], [aa].
The number of equivalence classes induced by a language is called the index of the language (A is of index 3)

Homework

In homework you will show:

indistinguishable by L is an equivalence relation if L is recognized by a DFA with k states then L has index at most k
If L has finite index k, then it is recognized by a DFA with k states
L is regular iff it has finite index. The index is the size of the smallest DFA recognizing L

Examples

What is the index of $a^{n} b^{n}$?

What are the equivalence classes of $a * b * ?$ What is the index of a*b*?

