
Theory of Computation Assignment 7

May 24, 2005

This assignment is due on Thursday, June 2, 2005.

1 Primitive Recursive Functions

In lecture I presented five schemas for defining primitive recursive functions.
They are as follows:

1. [Zero] There is a constant function zero of every arity.

Zk(x1, . . . , xk) = 0

2. [Successor] There is a successor function of arity 1.

S(x) = x + 1

3. [Projection] There are projection functions for every argument position of
every arity.

P k
i (x1, . . . , xk) = xi where k > 0, i ≤ k

4. [Composition (also called substitution)] The composition of the function
f of arity k with functions g1, . . . gk, each of arity l, defines a f ◦l

k [g1 . . . gk]
of arity l satisfying:

f ◦l
k [g1 . . . gk](x1, . . . , xl) = f(g1(x1, . . . , xl), . . . , gk(x1, . . . , xl))

5. [Primitive Recursion] The arity k function defined by primitive recursion
from a function g of arity k−1 and a function h of arity k +1 is indicated
PRk[g, h]. It satisfies:

PRk[g, h](0, x2, . . . , xk) = g(x2, . . . , xk)
PRk[g, h](x + 1, x2, . . . , xk) = h(x, PRk[g, h](x, x2, . . . , xk), x2, . . . , xk)

In lecture we showed how to define addition by primitive recursion:

PR2[P 1
1 , S ◦3

1 [P 3
2 ]]
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1.1 Exercises

Using primitive recursion define:

1. Multiplication

2. Bounded quantification

Define the bounded existential and universal quantifiers

(a) BEQ[P] = ∃x < y.P(x)

(b) BUQ[P] = ∀x < y.P(x)

Define these as functions of y. My solution uses primitive recursion on y,
so the order of arguments is y first, x second. It helps to define if-then-else
and “boolean” functions (I use 0 for false and 1 for true) first.

2 Lambda Calculus

2.1 Syntax

Terms in the lambda calculus are either variables, lambda-abstractions, or ap-
plications.

Application associates to the left, that is mno is associated ((mn)o).
The dot in lambda abstraction is a left parenthesis that extends as far to

the right as possible. Hence, λx.λy.mno is (λx.(λy.((mn)o))).
The first rule (α) states formally that variable names do not matter:

λx.M = λy.M [y/x] provided y does not occur free in M .

The second rule (β) embodies the basic mechanism for function application,
in which the formal parameter is replaced by the actual parameter.

(λx.M)N = M [N/x]

Both rules rely on substitution, which is defined as follows:

z[M/x] = z if x 6= z

x[M/x] = M if x = z

(λy.N)[M/x] = λz.(N [z/y][M/x]) where z is a new variable that is
distinct from x and does not oc-
cur in N and is not free in M .

(N1N2)[M/x] = (N1[M/x])(N2[M/x])

The treatment of variable renaming prevents capture of bound variables. It
is sometimes necessary to do all of the renaming suggested by the definition.
Often in calculation it is useful to preserve names if they do not cause conflict.
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2.2 Calculating with Church numerals

First, note that the Church numerals iterate application of the first argument
to the second. Examples are:

0 − λs.λz.z

1 − λs.λz.sz

2 − λs.λz.s(sz)
3 − λs.λz.s(s(sz))

The successor function is defined:

λn.λs.λz.s(n s z)

Note how the successor function acts on the numeral 2:

(λn.λs.λz.s(nsz))(λs.λz.s(sz))
(λs′.λz′.s′((λs.λz.s(sz))s′z′))

(λs′.λz′.s′(λz.s′(s′z))z′))
(λs′.λz′.s′(s′(s′z′)))

When programming with Church numerals it is important to think of each
numeral as capable of driving a loop the iterates that number of times.

In the λ-calculus values are encoded by the control structures that analyze
them. Booleans, thus, are represented by the equivalent of if-then-else:

true = λt.λf.t false = λt.λf.f

2.3 Exercises

1. Using the representation of Booleans given above define:

(a) and

(b) or

(c) not

2. Use Church numerals to define addition and multiplication. See how the
number n is represented by a loop that applies its first argument n times to
its second argument. In the successor function above the first argument (s)
gets applied one more time. That is the essence of the successor function.

3. Pairing and projection operators can be defined in the same manner. The
function below can construct pairs.

mkpair = λa.λb.λc.c a b
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These pairs are analyzed by providing the correct projection function. The
functions satisfy the laws:

π1(mkpair a b) = a

π2(mkpair a b) = b

The first projection function is:

π1 = λp.p(λx.λy.x)

Define the second projection function (π2).

4. Define a function that maps 0 to the representation of the pair (0, 0), and
maps every other natural number n to (n, n − 1). Use this function to
define the predecessor function.

5. Define the monus function, which returns the difference of two numbers if
the difference is non-negative. If the difference is negative monus should
return zero. [Hint: use the predecessor function.]

6. Define an integer equality function.

7. Argue convincingly that the factorial function below is definable in the
lambda calculus:

FACT = λfact .λn.if n = 0 then 1 else n ∗ fact(n− 1)

8. Illustrate a fragment of the computation of (Y FACT )(λs.λz.s(sz)). (Re-
call that Y = λf(λx.f(xx))(λx.f(xx)))

3 Representability of recursive functions in lambda
calculus

In this section you will demonstrate that all primitive and partial recursive
functions are definable in the lambda calculus.

When answering these questions note that in many cases the function defi-
nition schema has parameters that vary with the arity. It is acceptable to give
a family of lambda terms to implement the schema. For example the constant
function zero of arity k is given by the family of terms:

λx1. . . . .λxk.λs.λz.z

3.1 Exercies

1. Show that all primitive recurisve functions are definable in the lambda
calculus by giving lambda terms for every schema. You may assume any
of the results of the previous problem, even if you didn’t solve it.
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My implementation of the primitive recursion schema uses some of the
same techniques as the implementation of predecessor. If it helps, pick a
fixed arity of PR to implement.

2. Illustrate your construction by showing the translation of the addition
function given in the first exercise.

3. Recall the minimization schema:

The function of arity k defined by minimization of a function f of arity
k + 1, written µf , satisfies:

µf(x1, . . . , xk) = the least x such that f(x, x1, . . . , xk) 6= 0 and
for all y < x, f(y, x1, . . . , xk) is defined and
equal to 0

Show that functions defined by minimization can be defined by the lambda
calculus.

My implementation of the minimization schema makes essential use of the
fixed point combinator used in the factorial example.
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