
Theory of Computation

November 16, 2010

This assignment gives you experience programming with primitive recursive
functions. In the past I have assigned this as a pencil and paper exercise, how-
ever, some students have found it informative to approach this as a programming
exercise.

In Chapter 1, Machtey and Young presents a version of the primitive recur-
sive functions to define functions on strings over a k-symbol alphabet. I have
written a Haskell interpreter for this formalization. It is in the file MY.hs.

In lecture and in the notes below, primitive recursive functions over nat-
ural numbers are defined. I have also written a Haskell interpreter for that
formalization. It is in the file NaturalPR.hs.

For this assignment you have three options, any one of which is
acceptable. You may do one of the following:

1. do the original assignment below with pencil and paper,

2. do the original assignment below as a programming exercise (possibly
starting from NaturalPR.hs), or

3. work through the examples and exercises in Machtey and Young as a
programming exercise including at least those problems that correspond
to the problems listed below. You may use MY.hs if you wish.

1 Original Assignment

1. In lecture I presented five schemas for defining primitive recursive func-
tions. They are as follows:

(a) [Zero] There is a constant function zero of every arity.

Zk(x1, . . . , xk) = 0

(b) [Successor] There is a successor function of arity 1.

S(x) = x + 1

1



(c) [Projection] There are projection functions for every argument posi-
tion of every arity.

P k
i (x1, . . . , xk) = xi where k > 0, i ≤ k

(d) [Composition (also called substitution)] The composition of the func-
tion f of arity k with functions g1, . . . gk, each of arity l, defines a
f ◦l

k [g1 . . . gk] of arity l satisfying:

f ◦l
k [g1 . . . gk](x1, . . . , xl) = f(g1(x1, . . . , xl), . . . , gk(x1, . . . , xl))

(e) [Primitive Recursion] The arity k function defined by primitive re-
cursion from a function g of arity k−1 and a function h of arity k+1
is indicated PRk[g, h]. It satisfies:

PRk[g, h](0, x2, . . . , xk) = g(x2, . . . , xk)
PRk[g, h](x + 1, x2, . . . , xk) = h(x,PRk[g, h](x, x2, . . . , xk), x2, . . . , xk)

In lecture we showed how to define addition by primitive recursion:

PR2[P 1
1 , S ◦3

1 [P 3
2 ]]

Using primitive recursion define:

(a) Multiplication

(b) If-then-else (e.g. ITE(1, x, y) = x, ITE(0, x, y) = y)

(c) Or

(d) And

(e) Define the bounded existential and universal quantifiers

i. BEQ[P] = ∃x < y.P(x)
ii. BUQ[P] = ∀x < y.P(x)

Define these as functions of y. My solution uses primitive recursion
on y, so the order of arguments is y first, x second. It helps to define
if-then-else and “boolean” functions (I use 0 for false and 1 for true)
first.

(f) Divides (use Bounded quantification to search for a divisor)

(g) Prime

2


