CS 581: Theory of Computation Fall 2009
 Mid-term exam
 James Hook

This is a closed-notes, closed-book exam.

1. PDA construction
(a) Construct a PDA accepting the language

$$
A=\{w \mid w \text { has an equal number of } a \text { 's and } b \text { 's }\}
$$

(b) Justify your construction
(c) Illustrate a computation of your machine on the string aabbba.
2. Not Regular

Consider the language

$$
A=\{w \mid w \text { has an equal number of } a \text { 's and } b \text { 's }\}
$$

Use this language to demonstrate three techniques for showing that A is not regular.
(a) Show A is not regular using the pumping lemma.
(b) Show A is of infnite index.
(c) Show A is not regular by using closure properties and the fact that $\left\{a^{i} b^{i} \mid i \geq 0\right\}$ is not regular.
3. Shuffle Let $A, B \subseteq \Sigma^{\star}$ be languages. Define the shuffle of A and $B, A \odot B$ as follows:

$$
A \odot B=\left\{x_{1} y_{1} \cdots x_{k} y_{k} \mid x_{1} \cdots x_{k} \in A \text { and } y_{1} \cdots y_{k} \in B, x_{i}, y_{i} \in \Sigma^{\star}\right\}
$$

For example, $\{000\} \odot\{111\}$ includes the strings $000111,111000,101010$, 010101, 011100,
Define the shuffle closure of A, A^{\otimes}, as follows:

$$
\begin{aligned}
A^{\odot^{0}} & =\{\epsilon\} \\
A^{\odot^{n+1}} & =A^{\odot^{n}} \odot A \\
A^{\otimes} & =\bigcup_{i \geq 0} A^{\odot^{i}}
\end{aligned}
$$

(a) Show the regular sets are closed under shuffle (\odot).
(b) Show the regular sets are not closed under shuffle closure (\otimes).

