CS 581: Theory of Computation Final exam James Hook December 5, 2005

This is a closed-book, closed-notes exam. All problems have equal weight.

- 1. Relating classes of languages.
 - (a) Define P, NP, and NP complete.
 - (b) Define Turing-decidable and Turing-recognizable.
 - (c) What is a verification problem?
 - (d) How do verification problems relate P and NP?
 - (e) How do verification problems relate Turing-decidable and Turing-recognizable?
- 2. For each of the following indicate if the statement is true, false, or an open problem.
 - (a) P = NP
 - (b) If P(x, y) is decidable then $\{y | \exists x. P(x, y)\}$ is recognizable
 - (c) In a reasonable proof system all true things are provable
 - (d) In a reasonable proof system all provable things are true
 - (e) All finite sets are regular
 - (f) Regular languages are closed under intersection
 - (g) Context Free languages are closed under intersection
 - (h) Decidable languages are closed under intersection
 - (i) Turing-recognizable languages are closed under intersection
- 3. Use an explicit construction to show that the regular languages are closed under intersection. Argue briefly that your construction is correct.
- 4. Turing's Y combinator is defined as:

$$(\lambda x.\lambda y.y(xxy))(\lambda x.\lambda y.y(xxy))$$

Prove that this is a fixed point combinator. That is, show that

$$(YF) = F(YF)$$

Recall the α rule:

 $\lambda x.M = \lambda y.M[y/x]$ provided y does not occur free in M.

The β rule:

$$(\lambda x.M)N = M[N/x]$$

Substitution:

$$\begin{split} z[M/x] &= z \quad \text{if } x \neq z \\ x[M/x] &= M \quad \text{if } x = z \\ (\lambda y.N)[M/x] &= \lambda z.(N[z/y][M/x]) \quad \text{where } z \text{ is a new variable that is } \\ & \text{distinct from } x \text{ and does not occcur in } N \text{ and is not free in } M. \\ (N_1N_2)[M/x] &= (N_1[M/x])(N_2[M/x]) \end{split}$$

5. Recall Rice's theorem:

Let P be a language consisting of Turing machine descriptions where P fulfills two conditions. First, P is nontrivial—it contains some, but not all, TM descriptions. Second, P is a property of the TM's language—whenever $L(M_1) = L(M_2)$, we have $\langle M_1 \rangle \in P$ iff $\langle M_2 \rangle \in P$. Here M_1 and M_2 are any TMs. P is an undecidable language.

Although we proved it in the context of Turing Machines, Rice's theorem can be proven for any acceptable programming system, $\phi_1, \phi_2, \phi_3, \ldots$. When given in the context an acceptable programming system the second property is restated in terms of function equality. It is stated: P is a property of indexes if whenever $\phi_i = \phi_j$ as partial functions $i \in P$ iff $j \in P$. (In lecture I may have described P as an index set.)

- (a) Restate Rice's theorem in the vocabulary of the lambda calculus.
- (b) A type system is a formal system that identifies sets of terms in a programming language that are "good" or "safe". Curry developed a type system for the lambda calculus in which all typable terms had a unique beta-normal form (that is, were unique up to alpha-conversion). For example, $\lambda x.x$ and $\lambda y.y$ are irreducible terms that are alpha-equivalent. Curry's type system is decidable. What does Rice's theorem say about the set of terms that Curry's type system accepts as type correct?