Lecture 3: Closure Properties & Regular Expressions Jim Hook Tim Sheard Portland State University

Last Time

- Defined DFA, regular languages
- Defined NFA, showed equivalent to DFA
- Showed closure properties of Regular Languages

Why do we care about closure properties?

- One course objective is to "map the world"
- Closure properties tell us how to build new regular languages from old

Can properties define a Class of Languages?

What is the smallest class of languages:

That contains

the empty language

the universal language

every singleton character of the alphabet

And is closed under

union

concatenation

iteration (Kleene star)

Regular languages?

- Can the regular languages from last lecture be this smallest class?
- Since they meet the requirements they must at least contain this smallest class
 – Discuss
- How can we tell if there are regular languages not in this class?

Regular expressions

- Kleene introduced regular expressions (REGEXP) to name the languages in this "smallest class"
 - a is a REGEXP for every a in $\boldsymbol{\Sigma}$
 - $-\epsilon$ is a REGEXP
 - \emptyset is a REGEXP
 - if R₁ and R₂ are REGEXPs then the following are REGEXPs
 - R₁ + R₂
 - R₁ R₂
 - R₁*

Regular expressions and Regular Languages

- Thm [1.54] A language is regular iff it is described by a regular expression
- Lemma [1.55] If a language is described by a regular expression then it is regular
- Proof sketch:
 - For each REGEXP we must show that a corresponding NFA can be constructed
 - We've done the hard work by proving the closure properties
 - We just have to complete the base cases for {a}, $\{\epsilon\}$, and \emptyset .

Regular expressions and Regular Languages

- More interesting: can we convert a DFA M into a regular expression?
- Lemma [1.60] If a language is regular then it is described by a regular expression
 - How do we prove this?
 - Can we calculate a REGEXP from a DFA?

DFA -> REGEXP

- One construction:
 - Draw a graph labeled essentially like the DFA
 - Find a way to remove states from the DFA systematically, replacing labels with regular expressions
 - Set things up so that when we are done the resulting regular expression describes the language accepted by the DFA

Generalized NFAs

- Generalize an NFA to have regular expressions labeling transitions
- Goal is to simplify an automaton to:

Helpful to have single start and final state

Simplification (remove q_{rip})

Initial Construction

Complete the transition relation by adding

- 1. epsilon transitions from start to all initial DFA states, and from all DFA final states to accept.
- 2. null transitions between all unlabeled DFA states,

Example (DFA)

	0	1	accept
start	3	Ø	Ø
0	Ø	a+b	3
1	a+b	Ø	Ø

	Cut 1	(w.r.t a	all pairs)	
	0	1	accept	
start	3	Ø	Ø	
0	Ø	a+b	3	
1	a+b	Ø	Ø	

	0	accept
start	ε+ ØØ *(a+b)	Ø + ØØ [*] Ø
0	Ø+(a+b) Ø*(a+b)	ε+(a+b) Ø*Ø

Simplifying

	0	accept
start	ε+ Ø Ø* (a+b)	Ø+ØØ*Ø
0	Ø+(a+b) Ø*(a+b)	ε+(a+b) Ø*Ø

	0	accept
start	8	Ø
0	(a+b)(a+b)	ε

Cut 0 and simplify

	0	accept
start	8	Ø
0	(a+b)(a+b)	ε

	accept
start	Ø+ ε((a+b)(a+b))* ε

	accept
start	((a+b)(a+b))*

Example (conclusion)

((a+b)(a+b))*

Proof Sketch

- Formalize GNFA
 - adjust delta to give REGEXP
 - define acceptance for GNFA
 - this will give a sequence of states visited on acceptance
- Show "ripping a state" preserves language accepted
 - Let G' be obtained from G by ripping q_{rip}
 - Show: $w \in L(G') \Rightarrow w \in L(G)$
 - Show: $w \in L(G) \Rightarrow w \in L(G')$

Proof Sketch (cont)

- Let G' be obtained from G by ripping q_{rip}
- Show: $w \in L(G') \Rightarrow w \in L(G)$
 - w \in L(G') implies there is a sequence of states: q_{start} , q_1 , ..., q_{accept} and substrings w_1 , w_2 , ..., w_n satisfying the acceptance conditions
 - Look at each w_i, either
 - w_i comes from an "R4" rule, or
 - w_i comes from an R1 R2* R3 rule
 - If w_i comes from an R4 rule then G can make a corresponding step
 - If w_i comes from an R1 R2* R3 rule, then w_i is of the form $y_1 \dots y_m$, where
 - $y_1 \in R1$,
 - y_i ∈ R2 (1<I<m)
 - $y_m \in R3$
 - In this case G transitions from q_i -1 to q_i with m-2 intermediate instances of q_{rip} on input $w_i = y_1 \dots y_m$

Proof Sketch (cont)

- Let G' be obtained from G by ripping q_{rip}
- Show: $w \in L(G) \Rightarrow w \in L(G')$
- w ∈ L(G) impiles there are states q_{start}, q₁, ..., q_{accept} and strings w₁, ..., w_n satisfying conditions of acceptance
- Cases:
 - q_{rip} not used in computation: w clearly in L(G') (use only R4 rules)
 - q_{rip} is used:
 - every occurrence of q_{rip} is in a context of the form:
 - $q_i q_{rip} q_{rip} q_{rip} \dots q_{rip} q_j$, in which there is one or more occurrences of q_{rip} between non rip states I and j.
 - In this case
 - » w_{i+1} will be an "R1" string
 - » $w_{i+2}, ..., w_{i-1}$ will be "R2" strings (there may be 0 of these)
 - » w_i will be an "R3" string

Proof Sketch (cont)

- Let G' be obtained from G by ripping q_rip
- Show: w ∈ L(G) => w ∈ L(G')
- Cases:
 - q_{rip} is used:
 - every occurrence of q_{rip} is in a context of the form:
 - $q_i q_{rip} q_{rip} \dots q_{rip} q_{j}$ in which there is one or more occurrences of q_{rip} between non rip states i and j.
 - In this case
 - » w_{i+1} will be an "R1" string
 - » w_{l+2} , ..., w_{j-1} will be "R2" strings (there may be 0 of these)
 - » w_i will be an "R3" string
 - Consequently, G' will transition from q_i to q_j on $w_{i+1} \dots w_j$ by an R1 R2* R3 transition

Next time

• Non-regular languages (pumping lemma)