
Lecture 3:
Closure Properties &
Regular Expressions

Jim Hook
Tim Sheard

Portland State University

Last Time

• Defined DFA, regular languages

• Defined NFA, showed equivalent to
DFA

• Showed closure properties of Regular
Languages

Why do we care about closure
properties?

• One course objective is to
“map the world”

• Closure properties tell us
how to build new regular
languages from old

Regular
Languages

∅

Σ∗

Can properties define a Class
of Languages?

What is the smallest class of languages:
That contains

the empty language
the universal language
every singleton character of the alphabet

And is closed under
union
concatenation
iteration (Kleene star)

Regular languages?

• Can the regular languages from last
lecture be this smallest class?

• Since they meet the requirements they
must at least contain this smallest class
– Discuss

• How can we tell if there are regular
languages not in this class?

Regular expressions

• Kleene introduced regular expressions
(REGEXP) to name the languages in this
“smallest class”
– a is a REGEXP for every a in Σ
– ε is a REGEXP
– ∅ is a REGEXP
– if R1 and R2 are REGEXPs then the following are

REGEXPs
• R1 + R2

• R1 R2

• R1
*

Regular expressions and
Regular Languages

• Thm [1.54] A language is regular iff it is
described by a regular expression

• Lemma [1.55] If a language is descried by a
regular expression then it is regular

• Proof sketch:
– For each REGEXP we must show that a

corresponding NFA can be constructed
– We’ve done the hard work by proving the closure

properties
– We just have to complete the base cases for {a},

{ε}, and ∅.

Regular expressions and
Regular Languages

• More interesting: can we convert a DFA
M into a regular expression?

• Lemma [1.60] If a language is regular
then it is described by a regular
expression
– How do we prove this?

– Can we calculate a REGEXP from a DFA?

DFA -> REGEXP

• One construction:
– Draw a graph labeled essentially like the

DFA
– Find a way to remove states from the DFA

systematically, replacing labels with regular
expressions

– Set things up so that when we are done
the resulting regular expression describes
the language accepted by the DFA

Generalized NFAs

• Generalize an NFA to have regular
expressions labeling transitions

• Goal is to simplify an automaton to:

• Helpful to have single start and final
state

R

Simplification (remove qrip)

qi qj

qrip

R4

R1

R2

R3

qi
qj

R1(R2
*)R3 + R4

Initial Construction

start accept

DFA

ε ε

ε

ε

Complete the transition relation by adding

1. epsilon transitions from start to all initial DFA states, and from all
DFA final states to accept.

2. null transitions between all unlabeled DFA states,

Example (DFA)

10

a,b

a,b

Example (GNFA)

1

0

a,ba,b

start accept
ε

ε

∅

∅

∅

∅

∅

0

Complete the transition relation by adding
epsilon transitions from start to all initial

DFA states, and from all DFA final
states to accept.

null transitions between all unlabeled DFA
states,

As Table

1

0

a,ba,b

start accept
ε

ε

∅

∅

∅

∅

∅

0

∅∅a+b1

εa+b∅0

∅∅εstart

accept10

Cut 1 (w.r.t all pairs)

∅∅a+b1

εa+b∅0

∅∅εstart

accept10

ε+(a+b) ∅* ∅∅+(a+b) ∅*(a+b)0

∅+ ∅ ∅* ∅ε+ ∅ ∅*(a+b)start

accept0

1

0
a,b

a,b

start acceptε
ε

∅

∅

∅

∅

∅

0

Simplifying

ε+(a+b) ∅* ∅∅+(a+b) ∅*(a+b)0

∅+ ∅ ∅* ∅ε+ ∅ ∅*(a+b)start

accept0

ε(a+b)(a+b)0

∅εstart

accept0

Cut 0 and simplify

ε(a+b)(a+b)0

∅εstart

accept0

∅+ ε((a+b)(a+b))* εstart

accept

((a+b)(a+b))*start

accept

Example (conclusion)

((a+b)(a+b))*

10

a,b

a,b

Proof Sketch

• Formalize GNFA
– adjust delta to give REGEXP

– define acceptance for GNFA
• this will give a sequence of states visited on acceptance

• Show “ripping a state” preserves language
accepted
– Let G’ be obtained from G by ripping qrip

– Show: w ∈ L(G’) => w ∈ L(G)

– Show: w ∈ L(G) => w ∈ L(G’)

Proof Sketch (cont)
• Let G’ be obtained from G by ripping qrip
• Show: w ∈ L(G’) => w ∈ L(G)

– w ∈ L(G’) implies there is a sequence of states: qstart, q1, …, qaccept
and substrings w1, w2, …, wn satisfying the acceptance conditions

– Look at each wi, either
• wi comes from an “R4” rule, or
• wi comes from an R1 R2* R3 rule

– If wi comes from an R4 rule then G can make a corresponding step
– If wi comes from an R1 R2* R3 rule, then wi is of the form y1 … ym,

where
• y1 ∈ R1,
• yi ∈ R2 (1<I<m)
• ym ∈ R3

– In this case G transitions from qi-1 to qi with m-2 intermediate
instances of qrip on input wi = y1 … ym

Proof Sketch (cont)

• Let G’ be obtained from G by ripping qrip
• Show: w ∈ L(G) => w ∈ L(G’)
• w ∈ L(G) impiles there are states qstart, q1, …, qaccept and strings

w1, …, wn satisfying conditions of acceptance
• Cases:

– qrip not used in computation: w clearly in L(G’) (use only R4 rules)
– qrip is used:

• every occurrence of qrip is in a context of the form:
– qi qrip qrip … qrip qj, in which there is one or more occurrences of qrip between

non rip states i and j.
– In this case

» wi+1 will be an “R1” string
» wI+2, …, wj-1 will be “R2” strings (there may be 0 of these)
» wj will be an “R3” string

Proof Sketch (cont)
• Let G’ be obtained from G by ripping q_rip
• Show: w ∈ L(G) => w ∈ L(G’)
• Cases:

– qrip is used:
• every occurrence of qrip is in a context of the form:

– qi qrip qrip … qrip qj, in which there is one or more occurrences of qrip
between non rip states i and j.

– In this case
» wi+1 will be an “R1” string
» wI+2, …, wj-1 will be “R2” strings (there may be 0 of these)
» wj will be an “R3” string

– Consequently, G’ will transition from qi to qj on wi+1 … wj by an R1
R2* R3 transition

Next time

• Non-regular languages (pumping lemma)

